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1. Introduction 
        Optimization has witnessed significant advancements in recent years, particularly in developing 
efficient algorithms for solving large-scale unconstrained optimization problems. Among these, conju-
gate gradient (CG) methods have emerged as a cornerstone due to their simplicity, low memory re-
quirements, and strong convergence properties [1]. These methods are particularly well-suited for 
problems where the objective function is smooth and convex, making them indispensable in various 
scientific and engineering applications, including machine learning, computational physics, and nu-
merical analysis [2]. 
 The classical conjugate gradient methods, such as the Fletcher-Reeves (FR), Polak-Ribière (PR) and 
Hestenes-Stiefel (HS) algorithms, have been extensively studied and applied [3]. Each method has its 
strengths and weaknesses, often leading to varying performance depending on the problem. For in-
stance, the FR method is known for its global convergence properties, while the PR and HS methods 
often exhibit faster convergence in practice but may suffer from numerical instability. Recent research 
has focused on enhancing the performance of these classical methods by exploring new strategies that 
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combine their desirable features [4]. One promising approach is the convex combination of different 
CG methods, which aims to leverage each method’s strengths while mitigating their limitations. This 
approach has led to development of novel algorithms that exhibit improved convergence rates and 
robustness across a broader range of problems. 
       Unconstrained optimization minimizes an objective function that depends on real variables with-
out any limitations or restrictions on the values these variables can take [5]. Essentially, it involves 
solving general optimization problems where no constraints are imposed on the permissible range of 
the variables [6]; consider the following unconstrained optimization problem: 
 

        min{f(x), x ∈ Rn}                                                              (1) 

 
where f: Rn ⟶ R  is a continuously differentiable function; the authors define the gradient as gk =
∇f(xk)  The conjugate gradient methods are among the best optimization techniques for solving large-
scale problems.  
Generally, to solve this problem, starting from an initial point x0 ∊ Rn [7], a conjugate gradient algo-
rithm generates a sequence of points {𝑥𝑥𝑘𝑘} as follows: 
 

xk+1 = xk + αkdk                                                     (2) 

Where 𝛼𝛼𝑘𝑘 is the step size selected by using line search and the directions 𝑑𝑑𝑘𝑘 are generated as: 
 
 

                                        dk+1 = −gk+1 + βkdk,        d0 = −g0           (3)                                               

 
βk is known as the conjugate gradient coefficient; the different choices for this coefficient correspond to 
different conjugate gradient methods. Some of these methods are: HS [8], FR [3], PRP [9], CD [10], LS 
[11], DY [12], and HZ [13]: 
 
 

                βkHS = gk+1 
T  yk
yk
T dk

       βkFR = ǀǀgk+1ǀǀ2

ǀǀgkǀǀ2
        βkPRP = gk+1 

T  yk
ǀǀgkǀǀ2

     βkCD = ǀǀgk+1ǀǀ2

−gk
T dk

 

 

                                βkLS = gk+1 
T  yk
−gk

T dk
                 βkDY = ǀǀgk+1ǀǀ2

yk  
T dk

               βkHZ = gk+1
T  yk
dk    
T yk

− 2 ǀǀykǀǀ2

dk
T  yk

gk+1  
T dk
dk
T  yk

 

 
where yk = gk+1 − gk, and ‖.‖ denotes the Euclidean norm. 
 
         In this paper, authors use strong Wolfe line search, which is determined by the subsequent criteria 
[14]: 
 

               f(xk + αkdk) − f(xk) ≤ ραkgkTdk                             (4) 

                                        σgkTdk ≤ gk+1T dk ≤ −σgkTdk                                    (5) 

       Where 0 < ρ < σ < 1, the hybrid algorithm is a fundamental class of conjugate gradient techniques. 
Moreover, because hybrid schemes capitalize on the factors that make them up, they outperform stand-
ard conjugate gradient approaches regarding computational performance and have more reliable con-
vergence characteristics.  
Academics are interested in hybrid or mixed conjugate gradient approaches. For instance, Andrei [15] 
proposed a new hybrid conjugate gradient method based on the convex combination of HS and DY 
which is defined as: 

βkC = (1 − θk)βkHS + θkβkDY            𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒                          0 ≤ 𝜃𝜃𝑘𝑘 ≤ 1 
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 In addition, Sabrina et al [16], proposed the following hybrid method: 

βk
hyb = αkβkFR + θkβkPRP + (1 − αk − θk)βkDY  where 0 ≤ θk ≤ 1 

Furthermore, Abbo and Hameed [6] suggested a new hybrid method which is defined as follows: 

βkNK1 = ΥβkLS + (1 − Υ)βkDY 

 
       This paper proposes a new hybrid conjugate gradient method based on a convex combination of 
the DY, HS, and HZ conjugate gradient algorithms to solve unconstraint optimization problems.  
The remainder of this paper is organized as follows: under section 2, the authors introduce some pre-
viously proposed approaches, present the hybrid conjugate gradient method, and obtain the parame-
ters δ and γ through various techniques. The authors demonstrate that under mild conditions, the cho-
sen method with the Wolfe line search produces directions that meet the sufficient descent criteria, the 
algorithm will be proposed, and the newly chosen method’s descent condition and convergence fea-
tures will be analyzed. The authors obtained results after implementing some functions presented in 
section 3, and numerical analysis was performed, and section 4 provides analysis of the results and 
significance of this study along with the study’s limitations, and final concluding remarks are presented 
in section 5. 

2. Material and Method 
2.1. Proposed Method 

         In this paper, a convex combination of the DY, HS and HZ conjugate gradient algorithms is pro-
posed. The conjugate gradient parameter: 
 
                βkhSH = δkβkDY + ΥkβkHS + (1 − δk − Υk)βkHZ                                          (6) 
Consequently, the direction 𝑑𝑑𝑘𝑘 is given by: 
                dk+1 = −gk+1 + βkdk,        d0 = −g0                                                        (7) 
The parameters 𝛿𝛿𝑘𝑘, 𝛶𝛶𝑘𝑘 satisfying 0 ≤ 𝛿𝛿𝑘𝑘,𝛶𝛶𝑘𝑘 ≤ 1 are selected, as explained later. Note that 

• If δk = 1 and Υk = 0, then βkhSH = βkDY  

• If δk = 0 and Υk = 1, then βkhSH = βkHS  

• If δk = 0 and Υk = 0, then βkhSH = βkHZ   

• If δk = 0 and 0 < Υk < 1, then βkhSH = ΥkβkHS + (1 − Υk)βkHZ which is convex combination of 

𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 and 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻  

• If Υk = 0 and  0 < δk < 1, then βkhSH = δkβkDY + (1 − δk)βkHZ which is convex 

    combination of 𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷  and 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻  [17] 

• If (1 − δk − Υk) = 0 and 0 ≤ δk,Υk ≤ 1, then Υk = 1 − δk, hence  

    βkhSH =𝛿𝛿𝑘𝑘  βkDY+(1−𝛿𝛿𝑘𝑘) βkHS which is convex combination of βkDY and  βkHS [18] 

• If δk, ∈ (0,1), Υk ∈ (0,1) and 0 < δk + Υk < 1, then a new hybrid conjugate gradient method is 
obtained as a convex combination of DY, HS and HZ. 

From 6 and 7 it is evident that: 

dk = �
−gk                                                                                                                                                      if k = 0

−gk+1 + δk
ǁgk+1 ǁ2

dk
T yk

dk + Υk
gk+1
T  yk
dk
T yk

 dk + (1 − δk − Υk) �gk+1
T  yk
dk
T yk

− 2 ǁykǁ2

dk
T yk

gk+1
T  dk
dk
T yk

�dk , if k ≥ 1
 

�  (8) 

  

        The conventional conjugacy requirement is applied to select the parameters δk,Υk that is dk+1T yk =
0 thus, the following lemma is obtained: 
Lemma 1: [6] if the condition dk+1T yk = 0 is satisfied at each iteration, then: 

1- δk = 2ǁykǁ2gk+1 
T dk (Υk+1)

− gk+1
T  gkdk

T yk−2ǁykǁ2gk+1 
T dk 

            0 < 𝛶𝛶𝑘𝑘 < 1                             (9) 
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2- Υk = (
gk  𝑦𝑦𝑘𝑘
2ǁykǁ2

− 1) δk                               0 < 𝛿𝛿𝑘𝑘 < 1                    (10) 
Proof 1: from (8): 

dk+1 = −gk+1 + δk
ǁgk+1 ǁ2

dkT yk
 dk + Υk

gk+1T  yk
dkT yk

 dk + (1 − δk − Υk)�
gk+1T  yk
dkT yk

− 2
ǁykǁ2

dkT yk

gk+1T  dk
dkT yk

�dk 

By multiplying both sides by 𝑦𝑦𝑘𝑘: 

dk+1T yk = −gk+1T yk + δk
ǁgk+1 ǁ2

dkT yk
 dkTyk + Υk

gk+1T  yk
dkT yk

 dkTyk + (1 − δk − Υk)�
gk+1T  yk
dkT yk

− 2
ǁykǁ2

dkT yk
∗

gk+1T  dk
dkT yk

�dkTyk 

   If dk+1T yk = 0 

0 = −gk+1T yk + δkǁgk+1 ǁ2 + Υkgk+1T  yk + (1 − δk − Υk)�gk+1T  yk − 2ǁykǁ2
gk+1T  dk

dkT yk
 � 

Following some algebraic computation, the above equation becomes: 

 δk = 2ǁykǁ2gk+1 
T dk (Υk+1)

− gk+1
T  gkdk

T yk−2ǁykǁ2gk+1 
T dk 

                          0 < Υk < 1  

The parameter Υ can be outside [0,1] then: 
• If δk < 0 then δk = 0 is assumed 
• If δk > 1 then δk = 1 is assumed 
• If δk + Υk ≥ 1 then δk + Υk = 1 is assumed  

 
Proof 2: from 9 and after some algebra similar to part 1: 

Υk = �− gk+1
T  gkdk

T yk−2ǁykǁ2gk+1 
T dk �δk+2ǁykǁ2gk+1 

T dk 
2ǁykǁ2gk+1 

T dk 
              0 < 𝛿𝛿𝑘𝑘 < 1  

The parameter Υk can be outside [0,1] then: 
• If Υk < 0 then Υk = 0 is assumed 
• If Υk > 1 then Υk = 1 is assumed  
• If δk + Υk ≥ 1 then δk + Υk = 1 is assumed  

 

2.2.   Algorithm (hSSH1) and (hSH)1 
 Step 1: Initialization: given 𝑥𝑥0 ∊ 𝑅𝑅𝑛𝑛 and the parameters 0 < 𝜌𝜌 < 𝜎𝜎 < 1, compute: f(x0), g0 = ∇f(x0). 
Consider d0 = −g0, set the initial guess is 𝛶𝛶𝑘𝑘 = 0.5 𝑜𝑜𝑒𝑒 𝛿𝛿𝑘𝑘 = 0.5 
 Step 2: If ‖gk‖ ≤ 10−6, then stop. Else go to next. 
 Step 3: Calculate the step size 𝛼𝛼𝑘𝑘  under strong Wolfe condition (4) and (5) 
 Step 4: Generate xk+1 = xk + αkdk, compute f(xk+1), gk+1 = ∇f(xk+1) and yk = gk+1 − gk 
 Step 5: Compute 𝛿𝛿𝑘𝑘 as in equation (9) or 𝛶𝛶𝑘𝑘 as in equation (10) 
 Step 6: Calculate 𝛽𝛽𝑘𝑘ℎ𝐻𝐻𝐻𝐻  as in equation (6) 
 Step 7: Search direction 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + βkhSHdk if the restart criterion of Powell  
 �gk+1T gk� ≥ 0.2‖gk+1‖2 is satisfied, then restart, i.e., set dk+1 = −gk+1 otherwise define dk+1 = d 
 Step 8: Put 𝑘𝑘 = 𝑘𝑘 + 1 and continue with step 2 

2.3. Sufficient Descent Condition and Convergence 
2.3.1. Sufficient Descent Condition 

         To demonstrate that the proposed method satisfies the sufficient descent condition, the following 
assumptions are needed: 
 
Assumption 1 [19]: the level set T = {x ∈ Rn: f(x) ≤ f(𝑥𝑥0)} is bounded, i.e., there is a constant B > 0 such 
that ǁxǁ ≤ B  for all x ∈ T                                                                                                        (11) 
 

 
1 (hSSH1) and (hSH) denote hybrid algorithms named after the contributing authors: Sara, Sozan, and Hawraz for hSSH1; Sara 
and Hawraz for hSH. 
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Assumption 2 [20]: in a neighborhood N of T, f is continuously differentiable and its gradient is Lip-
schitz continuous, i.e., ∃L ≥ 0 such that ‖∇ f(x) − ∇ f(y)‖ ≤ L‖x − y‖  for all x, y ∈ N            (12) 
 
According to the assumption (1) and (2) on  f, there is a constant τ ≥ 0 such that:  
ǁ∇ f(x)ǁ ≤ τ for all x ∊ T 
The search direction determined by the novel approach meets sufficient descent criterion, as demon-
strated by the following theorem: 
 
Theorem 1 [21]: let { g𝑘𝑘 } and {dk} be generated by the proposed method, then dk satisfies the sufficient 
descent condition: 

𝑔𝑔𝑘𝑘 
𝑇𝑇 𝑑𝑑𝑘𝑘 ≤  −𝑐𝑐ǁ𝑔𝑔𝑘𝑘 ǁ2 for all 𝑘𝑘 ≥ 0 , 𝑐𝑐 > 0                                                              (13) 

Proof: by applying mathematical induction, the fact that the search direction should satisfy the follow-
ing descent condition is demonstrated: 
When 𝑘𝑘 = 0 that is 𝑑𝑑0 = −𝑔𝑔0 
Hence 𝑔𝑔0𝑇𝑇  𝑑𝑑0 =  −ǁ𝑔𝑔0 ǁ2 
 
The condition is satisfied when k = 0 
 
Now if 𝑘𝑘 ≥ 1: 

dk+1 =  −gk+1 + βkhSHdk  

= −g𝑘𝑘+1 + (𝛿𝛿𝑘𝑘𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 + 𝛶𝛶𝑘𝑘𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + (1 − 𝛿𝛿𝑘𝑘 − 𝛶𝛶𝑘𝑘)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻)𝑑𝑑𝑘𝑘  

= −(δ𝑘𝑘g𝑘𝑘+1 + Υ𝑘𝑘g𝑘𝑘+1 + (1 − 𝛿𝛿𝑘𝑘 − Υk)𝑔𝑔𝑘𝑘+1 ) + ( 𝛿𝛿𝑘𝑘𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 + 𝛶𝛶𝑘𝑘β𝑘𝑘𝐻𝐻𝐻𝐻  + (1 − δk −  𝛶𝛶k) 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻)𝑑𝑑𝑘𝑘 

After some algebraic computations: 

𝑑𝑑𝑘𝑘+1 = δk𝑑𝑑𝑘𝑘+1𝐷𝐷𝐷𝐷 + Υk𝑑𝑑𝑘𝑘+1𝐻𝐻S + (1 − δk − Υk)dk+1𝐻𝐻𝐻𝐻                                                               (14) 

By multiplying both sides by 𝑔𝑔𝑘𝑘+1𝑇𝑇 : 

gk+1T  dk+1 = δkgk+1T  dk+1DY + Υkgk+1T  dk+1HS + (1 − δk − Υk)gk+1T  dk+1HZ                             (15) 

 
The seven cases are proven as follows: 
Case 1 [12]: if δk = 1 ,Υk = 0, then 

gk+1T  dk+1 = gk+1T  dk+1DY  the sufficient descent condition for DY has to be proven: 

dk =  −gk + βkDY dk−1   

βkDY =  ǁgk ǁ2

dk−1
T (gk−gk−1)

  

gk+1 
T dk+1 = gkT(−gk+1 + βkDYdk)  

= ǁgk+1 ǁ2 + βkDY gk+1 
T dk 

Since gk+1 dkT = 0 then gk+1 is orthogonal to dk  
Hence  

gk+1 
T dk+1 = − ǁgk+1 ǁ2  

Then the sufficient descent condition becomes: 

gk+1 
T dk+1DY = − ǁgk+1 ǁ2 ≤ −c1 ǁgk+1 ǁ2                  c1 ∈ (0,1)                                        (16) 

Case 2 [8]: If 𝛿𝛿𝑘𝑘 = 0 ,𝛶𝛶𝑘𝑘 = 1 

gk+1T  dk+1 = gk+1T  dk+1HS   

 
The sufficient descent condition for HS has to be proven: 
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gk+1 
T dk+1  ≤ −c2 ǁgk+1 ǁ2  where 𝑐𝑐2 is a small positive number 

βkHS =
gk+1 
T  yk
ykT dk

 

dk+1 =  −gk+1 + βkHS dk 
Multiplying both sides by gk+1 

T  

gk+1T dk+1 =  gk+1 
T ( −gk+1 + βkHS dk)   

=  − ǁgk+1 ǁ2 +  βkHS gk+1 
T dk  

By substituting 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 

gk+1T dk+1 =  − ǁgk+1 ǁ2 + gk+1 
T  yk
yk
T dk

 gk+1 
T dk  

since gk+1 dkT = 0 (Exact line search) 

gk+1T dk+1HS = − ǁgk+1 ǁ2 ≤ −c2 ǁgk+1 ǁ2      c2 ∈ (0,1)                                                            (17) 

Case 3 [13]: if 𝛿𝛿𝑘𝑘 = 0 ,𝛶𝛶𝑘𝑘 = 0   
 gk+1T  dk+1 = gk+1T  dk+1HZ ≤ −c3ǁgk+1 ǁ2                                                                                   (18) 

Where c3 = 7/8 

Case 4 [22]: if δk = 0 and 0 <  Υk < 1  

𝛽𝛽𝑘𝑘ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛶𝛶𝑘𝑘𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + (1 − 𝛶𝛶𝑘𝑘) 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛶𝛶  ∈  [0,1] 

dk+1hHZHS = −gk+1 + βkhHZHSdk  

dk+1hHZHS = (1 − Υk)dk+1HZ + Υkdk+1HS   

By multiplying by   𝑔𝑔𝑘𝑘+1𝑇𝑇 : 

gk+1T dk+1hHZHS = (1 − Υk)gk+1T dk+1HZ + Υkgk+1T dk+1HS   

Three cases are obtained: 

If 𝛶𝛶𝑘𝑘 = 0 then: 

gk+1T dk+1hHZHS = gk+1T dk+1HZ   

W.W. Hager and H. Zhang proved  [22] that dk+1HZ satisfies the sufficient descent condition i.e. there is 
c3 = 7

8
> 0 

gk+1T dk+1HS = −‖gk+1‖2 + gk+1
T yk
dk
Tyk

�gk+1T dk�gk+1T dk+1HZ ≤ −c3‖gk+1‖2  

If Υk = 1 then: 

gk+1T dk+1hHZHS = gk+1T dk+1HS   

Clearly from strong Wolf condition that: 

(−σ − 1)dkTgk ≥ dkTyk = dkT(gk+1 − gk)  

≥ (σ − 1)dkTgk  

With substitution: 

gk+1T dk+1HS ≤ −c2‖gk+1‖2  

Where 𝜎𝜎 < 1
2
  

Finally, for 0 < 𝛶𝛶𝑘𝑘 < 1 

gk+1T dk+1hHZHS = (1 − Υk)gk+1T dk+1HZ + Υkgk+1T dk+1HS   

≤ −(c3(1 − Υk) + c2Υk)‖gk+1‖2  
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There is μ, λ ∈ ℝ where 0 < 𝜇𝜇 < 𝛶𝛶𝑘𝑘 < 𝜆𝜆 < 1 that gives 

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤ −𝑐𝑐4‖𝑔𝑔𝑘𝑘+1‖2                                                                             (19) 

Where 𝑐𝑐4 = (𝑐𝑐3(1 − 𝜆𝜆) + 𝑐𝑐2𝜇𝜇) > 0 

Case 5 [17]: if 𝛶𝛶𝑘𝑘 = 0 𝑎𝑎𝑎𝑎𝑑𝑑 0 <  𝛿𝛿𝑘𝑘 < 1 then: 

𝛽𝛽𝑘𝑘ℎ𝐻𝐻𝐻𝐻𝐷𝐷𝐷𝐷 =  𝛿𝛿𝑘𝑘𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 + (1 − 𝛿𝛿𝑘𝑘) 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻  

The sufficient descent condition for the convex combination for DY and HZ has to be proven: 
Here d0 = −g0 , dk+1 =  −gk+1 + βkdk, let the step size 𝛼𝛼𝑘𝑘 be generated by strong Wolfe condition i.e. 

f(xk + αkdk) − f(xk) ≤  σαk∇ f(xkT)dk  

σ∇ f(xkT)dk  ≤ ∇f(x + αk dk)Tdk  ≤  − σ∇ f(xkT)dk  

 gkTdk ≤  −cǁgk ǁ2 must be demonstrated 

By using mathematical induction, it’s clear that: 

gkTdk ≤  −cǁgk ǁ2for k = 0  

Assume that its true for k 

For k = k + 1 

dk+1 = −gk+1 + βkhHZDYdk  

= −(1 − δk)gk+1 − δkgk+1 + (1 − δk)βkHZdk + δkβkDYdk  

Implies 

dk+1hHZDY =  (1 − δk)dk+1HZ + δkdk+1DY   

Multiplying both sides by 𝑔𝑔𝑘𝑘+1𝑇𝑇  

gk+1T dk+1hHZDY =  (1 − δk)gk+1T dk+1HZ + δkgk+1T dk+1DY   

 Two cases are obtained: 

• If 𝛅𝛅𝐤𝐤 = 𝟎𝟎 then 𝐠𝐠𝐤𝐤+𝟏𝟏𝐓𝐓 𝐝𝐝𝐤𝐤+𝟏𝟏𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 =  𝐠𝐠𝐤𝐤+𝟏𝟏𝐓𝐓 𝐝𝐝𝐤𝐤+𝟏𝟏𝐡𝐡𝐡𝐡  (which is proved) 

• If 𝛅𝛅𝐤𝐤 = 𝟏𝟏 then 𝐠𝐠𝐤𝐤+𝟏𝟏𝐓𝐓 𝐝𝐝𝐤𝐤+𝟏𝟏𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 =  𝐠𝐠𝐤𝐤+𝟏𝟏𝐓𝐓 𝐝𝐝𝐤𝐤+𝟏𝟏𝐡𝐡𝐡𝐡  

Since  (−σ − 1)dkTgk ≥ dkTyk = dkT(gk+1 − gk ) ≥ (σ − 1)dkTgk  

gk+1T dk+1DY = − ǁgk+1 ǁ2 +
ǁgk+1 ǁ2

dkTyk 
 �gk+1T dk� ≤ − ǁgk+1 ǁ2 +

ǁgk+1 ǁ2

(σ − 1)dkTgk 
 ⎹ gk+1T dk⎹ 

  ≤ − ǁgk+1 ǁ2 + ǁgk+1 ǁ2

(σ−1)dk
Tgk 

(−σgk 
Tdk) 

 ≤ −(1 − σ
1−σ

)ǁgk+1 ǁ2 

Hence gk+1T dk+1DY ≤ −c1ǁgk+1 ǁ2 where σ ≤ 1
2

, 0 <  δk < 1 

gk+1T dk+1hHZDY =  (1 − δk)gk+1T dk+1HZ + δkgk+1T dk+1DY   

≤ −(c3(1 − δk) + c1δkǁgk+1 ǁ2)  

Then there exists µ, λ ∈ R where 0 <  µ <  δk <  λ <  1 which gives: 

gk+1T dk+1new  ≤  −c5ǁgk+1 ǁ2                                                                                                         (20) 

When c5 = (c3(1 − λ) + c1µ) 

Case 6 [18]: if  (1 − δk − Υk) = 0 when 0 <  δk ,Υk  < 1 then Υk = 1 − δk  

βkhHSDY =  δkβkDY + (1 − δk) βkHS  
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gk+1T dk+1 ≤ −c6ǁgk+1 ǁ2                                                                                                            (21) 

where c6 = cucv, cu = �sk 
T gk+1 
gk
Tgk+1

� , cv = �sk 
T gk
yk
Tsk
�  

Case 7: If 0 <  δk  <  1 and 0 <  Υk  <  1 and 0 <  δk + Υk <  1 then a new hybrid conjugate gradient 
method is obtained as a convex combination of DY, HS and HZ. 
It has to be proven that the direction satisfies the sufficient descent condition at each iteration i.e. 

gk+1 
T dk+1  ≤ −cǁgk+1 ǁ2 when (0 <  δk  <  1 and 0 <  Υk  <  1)  

 dk+1 =  −gk+1 + βkhSHdk when 𝛽𝛽 is a convex combination parameter of DY, HS and HZ 

βkhSH =  λ1βkDY + λ2βkHS + λ3βkHZ when λ1, λ2, λ3 > 0 and λ1 + λ2 + λ3 = 1 

This ensures that βkhSH is a weighted average of the individual conjugate gradient parameters inherited 
properties from each. 
Now from gk+1 

T dk+1  ≤ −cǁgk+1 ǁ2 and dk+1 =  −gk+1 + βkhSHdk 

gk+1 
T dk+1 = −ǁgk+1 ǁ2 + βkhSHgk+1 

T dk  

Since βkhSH  is a convex combination of the parameters βkDY,βkHS and βkHZ  and since each individual 
method have well-known descent properties and under standard conditions (such as using line search 
that satisfies Wolfe conditions), each technique satisfies sufficient descent condition. 

gk+1T dk+1  ≤ −cǁgk+1 ǁ2 and βkhSH =  λ1βkDY + λ2βkHS + λ3βkHZ  

gk+1 
T dk+1  ≤  λ1(−c1ǁgk ǁ2) + λ2(−c2ǁgk ǁ2) + λ3(−c3ǁgk ǁ2)  

Hence  

gk+1 
T dk+1 ≤  −(λ1c1 + λ2c2 + λ3c3)ǁgk+1 ǁ2  

Since λ1 + λ2 + λ3 = 1 

Let    c7 = λ1c1 + λ2c2 + λ3c3     then: 

gk+1 
T dk+1  ≤ −c7ǁgk+1 ǁ2                                                                                                             (22) 

When 𝑐𝑐7 > 0 and is a constant derived from the convex combination of the individual descent condi-
tions. 

2.3.2. Convergence Analysis 
        The conjugate gradient methods of global convergence are frequently demonstrated using the 
Zoutendijk criterion [23]. Furthermore, the Zoutendijk requirement is met by the proposed approach 
under the strong Wolfe condition, as demonstrated by the following lemma: 
Lemma 2 [24]: Consider the assumption (1) and (2) hold and from (2) where 𝒅𝒅𝒌𝒌 is a descent direction 
and ∝𝒌𝒌 is the step size determined by strong Wolf conditions, then, Zoutendijk condition 

∑ (𝒈𝒈𝒌𝒌+𝟏𝟏
𝑻𝑻 𝒅𝒅𝒌𝒌+𝟏𝟏)𝟐𝟐

ǁ𝒅𝒅𝒌𝒌+𝟏𝟏ǁ𝟐𝟐𝒌𝒌≥𝟏𝟏  < ∞         holds.                                                                                                  (23) 

The following theorem proves the novel method’s global convergence: 
Theorem 2 [25]: Suppose the assumption (1) and (2) hold and {𝒙𝒙𝒌𝒌 } be generated by the new algorithm, 
then: 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

𝑙𝑙𝑎𝑎𝑖𝑖ǁ𝑔𝑔𝑘𝑘+1 ǁ = 0                                                                                                                        (24) 

Proof: this theorem is proved by using contradiction. Suppose 𝒍𝒍𝒍𝒍𝒍𝒍
𝒌𝒌→∞

𝒍𝒍𝒊𝒊𝒊𝒊ǁ𝒈𝒈𝒌𝒌+𝟏𝟏 ǁ = 𝟎𝟎 is not true, then there 
exist C > 0 such that ǁ𝒈𝒈𝒌𝒌+𝟏𝟏ǁ ≥ 𝑪𝑪 for all k≥1 from theorem (1): 

𝑔𝑔𝑘𝑘+1 
𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤  −𝐾𝐾ǁ𝑔𝑔𝑘𝑘+1 ǁ2 for all K>0 

From Lipschitz rule: 
ǁykǁ =  ǁgk+1 −  gk ǁ ≤ Lǁxk+1 −  xkǁ ≤ LD  
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Where 𝐷𝐷 = max {ǁ𝑥𝑥 − 𝑦𝑦ǁ: 𝑥𝑥,𝑦𝑦 ∈ 𝑁𝑁} is diameter of N 
 dk+1 = −gk+1 + βkhSHdk 
ǁdk+1ǁ ≤  ǁgk+1ǁ + ⎹ βkhSH⎹ ǁdkǁ  

And since:  

βkhSH = δkβkDY + ΥkβkHS + (1 − δk − Υk) βkHZ   where 0 < δk,Υk < 1 and 0 < 1 − δk − Υk < 1 then 
⎹ βkhSH⎹ ≤  ⎹ βkDY⎹ + ⎹ βkHS⎹ + ⎹ βkHZ⎹ 

=
ǀǀgk+1ǀǀ2

yk  
T dk

+
gk+1 
T  yk
ykT dk

+
gk+1T  yk
dk    
T yk

− 2
ǀǀykǀǀ2

dkT  yk

gk+1  
T dk
dkT  yk

 

≤
ǀǀgk+1ǀǀ2

ǁyk   
T ǁǁdkǁ

+
ǁgk+1 

T ǁǁ ykǁ
ǁykTǁǁ dkǁ

+
ǁgk+1T ǁǁ ykǁ
ǁdk    

T ǁǁykǁ
− 2

ǀǀykǀǀ2

ǁdkTǁ ǁ ykǁ
ǁgk+1  

T ǁǁdkǁ
ǁdkT ǁǁ ykǁ

 

And since: 
gk+1 
T dk+1 ≤  −Kǁgk+1 ǁ2 ,   ǁ∇ f(x)ǁ ≤ Ʈ  and since ykǁ ≤ LD 

⎹ βkhSH⎹ ≤  
Ʈ2

KLD
+
ƮLD
KLD

+
ƮLD
KLD

− 2 
L2D2ƮK
(KLD)2

  = M 

∝𝑘𝑘≥ 𝜆𝜆 for all , 𝑘𝑘 ≥ 0 then, 
1
αk

 ≤  1
λ
  hence 

ǁdk+1ǁ ≤ ǁgk+1ǁ + ⎹ βkhSH⎹ ǁdkǁ ≤  ǁgk+1ǁ +
⎹ βkhSH⎹ ǁxk+1 − xkǁ 

αk
≤ Ʈ +

MD
λ

= W 

Hence  
ǁdk+1ǁ ≤ W then  ∑ 1

ǁdkǁ2
k≥1 = ∞, k ≥ 0 

From Zoutendijk condition, 

∑ (gk+1
T dk+1)2

ǁdk+1ǁ2
k≥1  < ∞ and since ǁgk+1ǁ ≥ C and gk+1 

T dk+1 ≤  −Kǁgk ǁ2 

K2C4  ∑ 1
ǁdkǁ2

k≥1  ≤  ∑ k2ǁgkǁ4

ǁdkǁ2
k≥1  ≤ ∞  

Which is in contradiction with ∑ 1
ǁdk+1ǁ2

k≥1 = ∞ 

3. Results 
3.1. Numerical Analysis 

         In this section, authors present numerical experiment results obtained by testing the new algo-
rithm hSH with HS, DY and HZ conjugate gradient algorithms on a set of 96 unconstrained optimiza-
tion test problems, in which the problems 1-53 are taken from the constrained and unconstrained test-
ing environment library [26]. The others come from the unconstrained problem collections [27, 28]. The 
dimensions of the test problems vary from 500 to 500000. For the sake of fairness, all the comparison 
methods use the strong Wolfe line search to compute the step-length ∝𝑘𝑘, and the relevant parameters 
are set to ρ=0.0001 and σ=0.9 and the hybridization parameter δ𝑘𝑘 = γ𝑘𝑘 = 0.5. The strategy described in 
[29,30] is adopted to compute the initial step length for the proposed method. The termination criterion 
is (1) ‖𝑔𝑔𝑘𝑘 ‖∞ ≤10^(-6) or (2) NOI> 2000, where “NOI” represents the number of iterations. When (2) 
does happen, the relevant algorithm is claimed to be invalid for the corresponding test problem and 
denote it by “NAN”. All codes are written in Matlab (as a tool for data analysis) 2024b and run on a 
Lenovo PC with a 3.60 GHz Central Processing Unit (CPU) processor and 8 GB RAM memory and 
Windows 10 operation system. Comparisons of these methods are given in the following context. Let 
e.g. fiH1 and fiH2 be the optimal values found by H1andH2, for problem i=1,...96, respectively. It is con-
sidered that in the particular problem i, the performance of H1 was better than the performance of H2 if 
 

       �fiH1 − fiH2� < 10−3                             (25) 

 

From (7) and according to assumptions 1 and 2, the strong wolf conditions, it is concluded that ∝𝑘𝑘 
which is obtained in the proposed method is not equal to zero, i.e., there exists a constant  𝜆𝜆 > 0 such 
that 
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       The number of iterations (NOI), the number of function-gradient evaluations (NOF), or the CPU 
time of H1 methods is less than those of H2 methods, respectively, to obtain complete comparisons, the 
profile of Dolan and More [31] is used to evaluate and compare the performance of the set of methods. 
In the first set of numerical experiments, the performance of the proposed hSSH1 algorithm is com-
pared with equation 9 when γ𝑘𝑘 = 0.5 versus the HS, DY, and HZ conjugate gradient algorithms. The 
table 1. represents, the numerical results based on the NOI and CPU time [32, 33]. 
 

Table 1: Test results comparison based on the NOI and CPU time. 
Function/Size DY HS HZ hSSH1 

 Ite/Tcpu/Grad. Ite/Tcpu/Grad. Ite/Tcpu/Grad. Ite/Tcpu/Grad. 

cosine/5000 10/0.232/6.82e-07 14/0.069/2.54e-07 12/0.059/4.52e-07 12/0.076/2.88e-07 

cosine/50000 11/0.297/3.63e-07 16/0.351/1.19e-07 12/0.269/4.12e-07 11/0.311/1.16e-07 

cosine/500000 141/16.357/9.77e-07 104/13.935/8.96e-07 17/3.521/3.76e-07 13/2.996/9.07e-07 

dixmaana/15000 12/0.467/8.32e-07 18/0.689/1.81e-07 13/0.436/3.85e-07 10/0.426/9.74e-09 

dixmaana/150000 10/4.136/2.06e-07 17/6.107/1.20e-07 12/4.231/3.16e-07 10/3.635/1.11e-07 

dixmaanb/15000 9/0.426/4.71e-07 16/0.492/7.18e-08 13/0.454/9.12e-07 9/0.375/6.12e-07 

dixmaanb/150000 10/4.251/1.19e-07 17/5.425/1.23e-07 12/4.608/7.54e-07 10/4.031/2.01e-08 

dixmaanc/15000 10/0.463/1.21e-07 15/0.505/1.10e-07 13/0.446/3.15e-07 9/0.355/2.72e-07 

dixmaanc/150000 11/4.249/1.01e-07 18/6.021/5.31e-07 12/4.467/3.90e-07 10/4.154/6.65e-07 

dixmaand/15000 10/0.425/3.86e-07 17/0.524/3.40e-07 13/0.427/5.21e-07 10/0.395/2.63e-07 

dixmaand/150000 12/4.524/7.02e-07 15/4.980/4.88e-07 14/4.701/5.99e-07 10/4.131/6.17e-07 

dixmaane/15000 680/6.862/9.92e-07 825/9.365/9.69e-07 918/12.062/9.44e-07 734/6.831/9.90e-07 

dixmaane/150000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

dixmaanf/15000 443/4.543/9.84e-07 734/8.503/9.79e-07 824/11.152/8.40e-07 609/5.863/9.99e-07 

dixmaanf/150000 1261/81.842/9.87e-07 NaN/NaN/NaN NaN/NaN/NaN 1361/124.107/9.95e-07 

dixmaang/15000 NaN/NaN/NaN 727/8.664/9.47e-07 734/9.682/9.86e-07 549/5.857/9.94e-07 

dixmaang/150000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 1727/165.880/9.56e-07 

dixmaanh/15000 NaN/NaN/NaN 678/7.959/8.47e-0 694/9.340/9.89e-07 546/5.560/9.58e-07 

dixmaanh/150000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 1757/167.650/8.87e-07 

dixmaani/15000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

dixmaanj/15000 NaN/NaN/NaN 1104/12.905/9.18e-07 1270/16.919/8.67e-07 766/7.099/8.33e-07 

dixmaanj/150000 NaN/NaN/NaN 
1866/206.411/8.37e-

07 
NaN/NaN/NaN 1880/168.385/9.26e-07 

dixmaank/15000 1248/8.820/9.91e-07 944/10.700/9.75e-07 1112/14.049/9.59e-07 972/9.257/4.54e-07 

dixmaank/150000 
1950/22977.379/9.91e-

07 
1528/170.107/9.36e-

07 
1730/210.919/7.62e-07 1614/141.934/9.98e-07 

dixmaanl/15000 1142/8.376/9.47e-07 1208/17.778/8.90e-07 966/12.292/9.61e-07 956/8.990/9.74e-07 

dixmaanl/150000 1598/97.081/9.82e-07 
1599/220.563/9.70e-

07 
1523/188.267/9.84e-07 1215/109.071/6.43e-07 

dixon3dq/500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

dqdrtic/5000 32/0.042/5.20e-07 48/0.039/8.38e-07 31/0.032/4.60e-07 30/0.030/9.09e-07 

dqdrtic/50000 42/0.178/7.03e-07 38/0.145/5.21e-07 36/0.136/5.94e-07 29/0.119/2.82e-07 

dqrtic/5000 38/0.358/9.62e-07 41/0.336/4.42e-07 49/0.391/8.28e-07 17/0.193/3.91e-07 

dqrtic/50000 94/6.235/7.32e-07 28/2.132/2.42e-07 107/6.332/9.77e-07 21/2.023/1.46e-07 

edensch/5000 26/0.220/7.77e-07 41/0.465/7.46e-07 27/0.234/5.93e-07 29/0.320/8.59e-07 

edensch/50000 25/2.307/8.75e-07 39/3.945/9.26e-07 54/5.957/9.45e-07 36/3.293/9.11e-07 

edensch/500000 30/24.466/7.92e-07 33/27.952/9.72e-07 25/22.080/5.00e-07 38/38.691/5.89e-07 

eg2/500 NaN/NaN/NaN 982/0.941/9.67e-07 NaN/NaN/NaN NaN/NaN/NaN 

fletchcr/5000 32/0.057/7.35e-07 62/0.074/5.77e-07 77/0.090/6.53e-07 206/0.284/9.59e-07 
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Table 1: continue     

fletchcr/50000 61/0.336/6.30e-07 150/0.992/9.38e-07 45/0.272/7.33e-07 53/0.347/5.61e-07 

fletchcr/500000 140/9.347/3.56e-07 260/19.613/8.01e-07 145/10.283/9.85e-07 174/14.300/8.28e-07 

freuroth/500 NaN/NaN/NaN 968/0.572/9.66e-07 NaN/NaN/NaN 552/0.320/9.78e-07 

genrose/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

himmelbg/50000 2/0.047/0.00e+00 2/0.038/0.00e+00 2/0.030/0.00e+00 2/0.028/0.00e+00 

himmelbg/500000 3/0.282/0.00e+00 3/0.320/6.82e-70 3/0.285/0.00e+00 3/0.297/0.00e+00 

liarwhd/5000 479/0.286/8.87e-07 34/0.030/1.11e-07 33/0.026/1.95e-07 43/0.039/6.08e-07 

liarwhd/50000 83/0.316/9.43e-07 40/0.163/1.38e-07 33/0.125/2.98e-07 84/0.376/1.36e-07 

penalty 1/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 139/20.686/3.12e-07 

penalty 1/50000 74/1351.136/2.96e-07 NaN/NaN/NaN 41/660.443/1.03e-07 36/592.580/2.50e-07 

quartc/5000 38/0.536/9.62e-07 41/0.458/4.42e-07 49/0.462/8.28e-07 17/0.266/3.91e-07 

quartc/50000 94/11.177/7.32e-07 28/4.264/2.42e-07 107/11.180/9.77e-07 21/3.788/1.46e-07 

quartc/500000 133/104.972/7.84e-07 41/29.785/3.53e-07 189/109.494/7.38e-07 25/23.851/8.95e-08 

tridia/500 561/0.177/1.00e-06 861/0.237/9.92e-07 955/0.276/8.42e-07 741/0.220/9.95e-07 

tridia/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

woods/50000 NaN/NaN/NaN 139/0.369/6.71e-07 205/0.518/6.60e-07 166/0.554/3.05e-07 

woods/500000 NaN/NaN/NaN 128/3.622/4.52e-07 159/4.175/6.64e-07 115/4.506/1.74e-07 

bdexp/5000 2/0.036/0.00e+00 2/0.010/0.00e+00 2/0.009/0.00e+00 2/0.008/0.00e+00 

bdexp/50000 2/0.058/0.00e+00 2/0.058/0.00e+00 2/0.058/0.00e+00 2/0.058/0.00e+00 

bdexp/500000 2/0.632/1.55e-120 2/0.634/1.72e-120 2/0.628/1.54e-120 2/0.637/1.55e-120 

exdenschnf/5000 17/0.049/1.71e-07 16/0.021/6.50e-07 17/0.014/5.99e-07 16/0.015/3.73e-07 

exdenschnf/50000 29/0.109/8.73e-07 20/0.101/5.25e-07 18/0.089/1.52e-07 17/0.093/4.85e-07 

exdenschnb/500000 77/1.509/8.97e-07 14/0.586/1.60e-07 12/0.521/3.79e-07 12/0.577/7.48e-07 

genquartic/5000 13/0.039/2.28e-07 15/0.013/2.01e-07 13/0.010/7.01e-07 10/0.010/2.27e-08 

genquartic/50000 11/0.060/2.09e-07 17/0.081/8.29e-07 12/0.064/4.30e-07 13/0.077/1.66e-07 

genquartic/500000 12/0.675/6.87e-07 16/0.779/1.66e-07 14/0.704/3.05e-07 13/0.805/5.86e-07 

biggsb1/500 1260/0.287/9.09e-07 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

sine/5000 NaN/NaN/NaN 138/0.337/7.77e-07 NaN/NaN/NaN NaN/NaN/NaN 

sine/50000 420/7.518/8.87e-07 NaN/NaN/NaN 25/0.711/5.51e-07 31/0.862/6.15e-07 

sine/500000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

fletcbv3/500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

nonscomp/5000 61/0.066/8.20e-07 65/0.045/6.39e-07 37/0.027/8.23e-07 35/0.030/9.28e-07 

nonscomp/50000 NaN/NaN/NaN 177/0.582/7.75e-07 41/0.141/7.33e-07 53/0.185/7.62e-07 

power1/500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

raydan1/500 178/0.096/8.44e-07 187/0.066/9.16e-07 199/0.065/9.76e-07 183/0.070/9.05e-07 

raydan1/5000 643/0.589/9.76e-07 643/0.626/9.86e-07 755/0.751/8.33e-07 626/0.580/9.63e-07 

raydan2/5000 8/0.036/1.94e-07 36/0.132/5.23e-08 8/0.028/1.94e-07 8/0.031/1.94e-07 

raydan2/50000 10/0.268/1.91e-07 30/0.902/5.89e-08 10/0.273/1.90e-07 10/0.276/1.90e-07 

raydan2/500000 11/3.033/5.80e-07 56/17.582/2.70e-07 11/3.084/3.95e-08 11/3.130/1.83e-07 

diagonal1/500 1275/1.107/9.60e-07 504/0.398/9.62e-07 392/0.286/9.33e-07 427/0.367/9.77e-07 

diagonal1/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

diagonal2/5000 989/1.812/9.97e-07 469/0.907/7.72e-0 427/0.798/9.60e-07 461/0.925/9.51e-07 

diagonal2/50000 NaN/NaN/NaN NaN/NaN/NaN 1728/25.397/8.83e-07 NaN/NaN/NaN 

diagonal3/500 1171/0.880/9.80e-0 833/0.598/9.93e-07 NaN/NaN/NaN 1008/0.761/8.51e-07 

diagonal3/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 
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Table 1: continue     

bv/500 NaN/NaN/NaN 1112/2.750/9.36e-07 802/2.233/8.83e-07 1095/2.456/6.41e-07 

bv/5000 0/0.041/2.00e-07 0/0.041/2.00e-07 0/0.042/2.00e-07 0/0.042/2.00e-07 

singx/1000 1198/11.578/9.63e-07 214/2.679/7.93e-07 140/1.667/4.09e-07 182/2.313/6.70e-07 

singx/5000 NaN/NaN/NaN 91/16.804/1.93e-07 103/20.968/2.66e-07 204/42.777/1.47e-07 

osb2/11 NaN/NaN/NaN 403/0.157/9.37e-07 456/0.171/6.17e-07 513/0.209/8.71e-07 

pen1/500 718/1.783/1.80e-07 65/0.522/1.53e-07 97/0.723/2.80e-07 57/0.458/2.23e-07 

pen1/5000 NaN/NaN/NaN 142/64.182/5.65e-08 50/21.173/4.42e-07 62/28.010/5.81e-07 

pen2/500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

rosex/500 90/0.481/3.32e-07 44/0.341/4.47e-07 39/0.250/1.70e-07 60/0.412/4.74e-07 

rosex/5000 93/19.816/8.30e-07 39/12.305/7.40e-07 32/10.085/9.11e-07 56/17.780/4.17e-07 

trid/500 46/0.200/7.04e-07 34/0.152/7.48e-07 32/0.134/7.82e-07 33/0.183/6.26e-07 

trid/5000 474/44.755/9.57e-07 38/6.742/8.70e-07 37/6.174/6.92e-07 72/10.882/7.72e-07 

 
     Figures 1 and 2, illustrate the performance profiles of the new method hSSH1 versus HS, DY and 
HZ based on the NOI and CPU time. 

  
Figure 1: Performance profiles using the iteration number. 

 

Figure 2: Performance profiles using the CPU time. 

 
    In the second set of numerical experiments, the performance of the new algorithm hSH is compared 
with eq. (10) δ𝑘𝑘=0.5 versus the HS, DY and HZ conjugate gradient algorithms. Table 2. illustrates the 
numerical results based on the NOI and CPU time, respectively. 
 

Table 2. Second set of test results comparison based on the NOI and CPU time. 

Function/Size DY HS HZ hSSH2 
 Ite/Tcpu/Grad. Ite/Tcpu/Grad. Ite/Tcpu/Grad. Ite/Tcpu/Grad. 

cosine/6000 11/0.201/6.11e-07 11/0.092/6.11e-07 11/0.088/6.11e-07 11/0.106/6.11e-07 

cosine/100000 11/0.929/2.77e-07 11/1.088/1.96e-07 11/0.900/2.92e-07 11/1.222/2.64e-07 

cosine/800000 13/8.594/6.81e-07 13/9.139/6.81e-07 13/9.802/6.81e-07 13/14.215/6.81e-07 

dixmaana/6000 9/0.567/6.51e-08 9/0.439/6.51e-08 9/0.419/6.51e-08 9/0.432/6.51e-08 

dixmaana/90000 10/6.466/6.48e-07 10/8.091/6.48e-07 10/6.885/6.48e-07 10/6.455/6.48e-07 

dixmaanb/24000 8/1.820/3.45e-07 8/1.565/3.45e-07 8/1.569/3.45e-07 8/1.730/3.45e-07 

dixmaanb/48000 10/3.508/1.37e-07 10/3.805/1.37e-07 10/3.107/1.37e-07 10/4.661/1.37e-07 

dixmaanc/2700 9/0.366/7.40e-08 9/0.263/7.40e-08 9/0.307/7.40e-08 9/0.229/7.40e-08 

dixmaanc/27000 10/2.380/8.39e-08 10/2.250/8.39e-08 10/3.254/8.39e-08 10/2.632/8.39e-08 

dixmaand/12000 10/1.100/8.17e-07 10/0.974/8.17e-07 10/0.948/8.17e-07 10/0.954/8.17e-07 

dixmaand/90000 10/6.375/7.97e-07 10/6.315/7.97e-07 10/5.726/7.97e-07 10/6.237/7.97e-07 
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Table 2: continue     

dixmaane/2400 322/2.503/9.61e-07 356/2.863/9.40e-07 402/3.315/8.79e-07 315/2.508/9.95e-07 

dixmaane/48000 1480/152.408/9.62e-07 1376/158.812/8.72e-07 1828/226.346/7.75e-07 1144/66.063/9.98e-07 

dixmaanf/15000 508/19.100/9.28e-07 776/30.426/7.79e-07 813/32.866/8.50e-07 569/16.063/9.07e-07 

dixmaanf/60000 1454/166.262/8.98e-07 1367/176.373/8.26e-07 1397/198.060/9.30e-07 1038/73.402/9.75e-07 

dixmaang/12000 528/14.711/9.23e-07 522/14.964/8.35e-07 741/23.772/9.48e-07 474/12.927/9.25e-07 

dixmaang/90000 1134/193.514/7.93e-07 1547/323.612/8.86e-07 1760/402.882/9.25e-07 1270/128.925/9.68e-07 

dixmaanh/6000 892/14.904/3.24e-07 926/16.477/9.99e-07 1013/17.217/6.95e-07 891/14.338/4.93e-07 

dixmaanh/30000 1050/61.610/9.37e-07 794/53.330/9.80e-07 903/65.752/9.24e-07 694/27.666/9.66e-07 

dixmaani/360 1813/3.507/9.35e-07 1704/3.271/8.19e-07 NaN/NaN/NaN 1723/2.460/9.98e-07 

dixmaanj/15000 935/31.392/9.68e-07 855/29.960/9.86e-07 886/35.517/9.30e-07 1062/22.861/9.77e-07 

dixmaanl/24000 847/54.423/8.16e-07 919/60.314/9.87e-07 817/51.560/7.20e-07 830/56.566/9.75e-07 

dixon3dq/150 1326/1.210/9.76e-07 1282/1.162/6.37e-07 1749/1.688/8.48e-07 1103/0.922/9.95e-07 

dixon3dq/1500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

dqrtic/5000 17/0.723/3.91e-07 17/0.609/3.91e-07 17/0.655/3.91e-07 17/0.491/3.91e-07 

dqrtic/150000 23/16.349/3.72e-07 23/15.471/3.72e-07 23/15.302/3.72e-07 23/15.546/3.72e-07 

edensch/7000 37/1.390/6.65e-07 28/0.854/9.85e-07 24/0.680/9.88e-07 27/0.809/4.83e-07 

edensch/40000 27/4.935/3.73e-07 37/6.608/4.94e-07 31/5.659/5.02e-07 34/6.178/7.43e-07 

fletchcr/1000 45/0.117/9.54e-07 83/0.140/4.34e-07 40/0.052/9.76e-07 72/0.109/7.81e-07 

fletchcr/50000 60/1.115/4.58e-07 49/0.917/5.58e-07 94/1.871/9.57e-07 84/1.739/1.54e-07 

fletchcr/200000 151/10.438/7.43e-07 113/8.054/8.08e-07 141/9.700/7.09e-07 123/8.850/6.49e-07 

freuroth/460 639/1.208/8.14e-07 431/0.780/5.41e-07 611/1.091/9.41e-07 585/1.017/9.93e-07 

genrose/10000 115/0.397/5.50e-07 102/0.310/9.23e-07 149/0.461/9.99e-07 105/0.324/9.16e-07 

himmelbg/70000 2/0.162/2.12e-174 2/0.102/2.12e-174 2/0.101/2.12e-174 2/0.102/2.12e-174 

himmelbg/240000 2/0.357/6.78e-07 2/0.338/6.78e-07 2/0.274/6.78e-07 2/0.324/6.78e-07 

penalty 1/4000 36/12.260/7.35e-07 192/53.614/2.86e-07 35/10.842/6.47e-08 40/9.515/5.09e-07 

penalty 1/10000 13/23.011/3.63e-08 13/21.821/3.72e-07 13/19.860/3.60e-08 13/22.164/3.60--08 

quartc/4000 17/0.395/2.01e-07 17/0.374/2.01e-07 17/0.577/2.01e-07 17/0.380/2.01e-07 

quartc/80000 22/8.017/3.10e-07 22/8.079/3.10e-07 22/8.162/3.10e-07 22/964.731/3.10e-07 

quartc/500000 25/38.576/1.15e-07 25/36.398/1.15e-07 25/36.035/1.15e-07 25/38.458/1.15e-07 

tridia/300 595/0.348/9.95e-07 640/0.416/9.68e-07 643/0.351/9.03e-07 527/0.218/9.54e-07 

tridia/2000 1463/0.848/9.65e-07 1997/1.460/9.50e-07 NaN/NaN/NaN 1546/1.292/8.97e-07 

bdexp/50000 2/0.129/0.00e+00 2/0.106/0.00e+00 2/0.083/0.00e+00 2/0.108/0.00e+00 

bdexp/500000 2/1.403/1.55e-120 2/1.290/1.55e-120 2/1.102/1.55e-120 2/1.234/1.55e-120 

exdenschnf/9000 20/0.715/6.22e-07 16/0.569/6.58e-07 16/0.555/4.68e-07 17/0.525/3.47e-07 

exdenschnf/280000 17/1.236/1.13e-07 18/1.302/2.22e-07 19/1.564/1.69e-08 16/1.343/7.56e-07 

exdenschnf/600000 20/2.892/9.20e-08 20/3.003/3.78e-07 17/2.649/7.28e-07 17/2.957/9.39e-07 

exdenschnb/6000 14/0.092/3.72e-07 12/0.029/8.32e-07 14/0.039/3.01e-07 14/0.041/2.02e-07 

exdenschnb/24000 14/0.092/7.43e-07 13/0.094/1.30e-07 14/0.107/6.03e-07 14/0.099/4.04e-07 

exdenschnb/300000 14/0.778/8.56e-07 13/0.784/4.49e-07 13/0.742/8.04e-07 17/1.007/1.32e-07 

genquartic/9000 12/0.110/5.58e-07 12/0.037/5.58e-07 12/0.039/5.58e-07 12/0.061/5.58e-07 

genquartic/90000 12/0.349/4.62e-07 12/0.349/1.59e-07 12/0.352/7.67e-07 12/0.410/4.09e-07 

genquartic/500000 15/1.924/3.94e-07 15/2.065/5.01e-07 12/1.541/5.83e-07 15/2.070/4.76e-07 

biggsb1/300 1373/1.083/9.67e-07 1387/1.128/8.38e-07 1427/1.352/9.37e-07 1097/0.873/8.81e-07 

sine/100000 16/2.554/8.05e-07 17/2.852/7.90e-07 18/2.806/7.33e-07 21/3.234/1.88e-07 

sine/250000 127/34.115/5.57e-07 31/12.221/5.16e-07 27/8.651/8.96e-07 105/35.070/4.24e-07 
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Table 2: continue     

sine/500000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

fletcbv3/100 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 

nonscomp/5000 41/0.289/4.02e-07 40/0.165/5.76e-07 37/0.169/9.89e-07 43/0.166/7.57e-07 

nonscomp/80000 41/0.621/6.88e-07 41/0.659/8.61e-07 43/1.067/9.35e-07 40/0.576/7.28e-07 

power1/150 1639/2.816/9.54e-07 1995/3.515/9.90e-07 NaN/NaN/NaN 1530/2.579/8.74e-07 

raydan1/500 184/0.405/8.89e-07 199/0.492/8.25e-07 224/0.535/8.08e-07 170/0.378/9.35e-07 

raydan1/5000 618/1.928/7.88e-07 757/2.269/9.10e-07 778/2.569/7.16e-07 592/2.994/9.59e-07 

raydan2/2000 6/0.079/6.10e-08 6/0.051/6.10e-08 6/0.046/6.10e-08 6/0.049/6.10e-08 

raydan2/20000 8/0.419/3.89e-07 8/0.360/3.89e-07 8/0.249/3.89e-07 8/0.256/3.89e-07 

raydan2/500000 11/8.501/1.83e-07 12/9.783/8.22e-08 11/8.791/1.83e-07 11/10.989/1.83e-07 

bv/2000 96/14.286/9.53e-07 102/13.060/9.61e-07 86/14.192/9.11e-07 109/11.945/8.70e-07 

bv/20000 0/4.533/1.25e-08 0/2.347/1.25e-08 0/2.531/1.25e-08 0/2.678/1.25e-08 

ie/500 9/18.944/1.45e-07 9/16.093/1.45e-07 9/16.622/1.45e-07 9/14.120/1.45e-07 

ie/1500 10/118.637/3.10e-07 10/125.435/3.10e-07 10/139.482/3.10e-07 10/91.283/3.10e-07 

singx/1000 161/6.598/7.31e-07 193/7.205/7.64e-07 377/13.437/7.35e-07 98/4.060/5.01e-07 

singx/2000 110/13.621/2.29e-07 241/27.190/7.41e-07 330/36.645/9.48e-07 134/18.040/5.51e-07 

lin/100 1/0.059/4.36e-14 1/0.031/4.36e-14 1/0.026/4.36e-14 1/0.021/4.36e-14 

lin/1000 11/46.039/1.74e-07 16/81.663/2.63e-07 11/65.130/1.74e-07 11/62.825/1.74e-07 

osb2/11 437/0.822/8.90e-07 616/0.829/9.33e-07 807/1.009/6.24e-07 433/0.534/8.64e-07 

rosex/500 47/1.067/4.92e-07 62/1.350/4.74e-08 57/1.260/3.64e-07 53/1.224/4.45e-07 

rosex/1000 57/4.822/6.55e-07 58/5.085/7.76e-07 60/5.220/9.82e-07 48/4.086/2.52e-07 

trid/500 32/0.434/5.93e-07 33/0.422/7.73e-07 32/0.430/8.21e-07 33/0.434/6.09e-07 

trid/8000 34/52.245/7.30e-07 33/55.504/9.83e-07 37/59.698/9.30e-07 33/53.081/7.97e-07 
 
Figures 3 and 4 show the performance profiles of the new method hSH versus HS, DY, and HZ based 
on the NOI and CPU time. 
 

 

  
Figure 3: Performance profiles using the iteration number. Figure 4: Performance profiles using the CPU time. 

4. Discussion 
        A convex combination of the DY, HS, and HZ conjugate gradient methods were evaluated on a 
variety of benchmark optimization problems. By utilizing the advantages of each approach, the convex 
combination improved convergence speed and resilience compared to the individual approaches, es-
pecially for ill-conditioned and non-convex problems. Although HZ demonstrated stability in various 
landscapes, DY performed exceptionally well in ill-conditioned settings. The comparison of the new 
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hybrid conjugate gradient method with existing methods in terms of NOI and CPU time (as presented 
in the tables above) is essential to demonstrate its efficiency and practical applicability. The iteration 
count directly reflects the convergence speed, and the new method's ability to converge in fewer itera-
tions indicates faster convergence, which is particularly beneficial for large-scale optimization prob-
lems. Additionally, CPU time is a critical metric for real-world applications, as it accounts for the actual 
computational cost. The new method's lower CPU time demonstrates its scalability and efficiency on 
modern hardware. By comparing the proposed method with established techniques, its novelty and 
superior performance are highlighted, making it a viable alternative for solving complex optimization 
problems. 
Moreover, regarding the study’s limitations, the primary challenge was identifying and selecting the 
most effective features from each of the HS, DY, and HZ methods. This required a comprehensive anal-
ysis to determine which characteristics of these methods contributed most significantly to the overall 
performance, ensuring that the strengths of each approach were properly leveraged. 

5. Conclusions 
         Conjugate gradient techniques are widely used to solve unconstrained optimization problems, 
particularly large-scale optimization problems. The hybrid approach, which combines traditional 
methodologies, is one of the most beneficial techniques. To develop a novel, effective technique, this 
research presents a new hybrid approach that computes parameters as a convex combination of three 
parameters: DY, HS, and HZ. 
       The practical results presented in this study demonstrate that the proposed strategy is faster and 
more effective than the alternative methods.  
       The authors recommend that future research explore the application of this new algorithm in train-
ing Feedforward Neural Networks (FFNNs) and consider its integration with fuzzy logic, time series 
analysis, and finite difference methods for further enhancement and broader applicability. 
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