
Kurdistan Journal of Applied Research (KJAR) | Print-ISSN: 2411-7684 – Electronic-ISSN: 2411-7706 | kjar.spu.edu.iq

Volume 2 | Issue 3 | August 2017 | DOI: 10.24017/science.2017.3.18

Successful Data Science Projects: Lessons Learned from

Kaggle Competition

Mohammed Zuhair Al-Taie

Faculty of Computing

Universiti Teknologi Malaysia

Johor, Malaysia
mza004@live.aul.edu.lb

Naomie Salim

Faculty of Computing

Universiti Teknologi Malaysia

Johor, Malaysia
naomie@utm.my

Adekunle Isiaka Obasa

Department of Computer Science College of

Science and Technology Kaduna Polytechnic

Kaduna, Nigeria
iaobasa2@gmail.com

Abstract: The workflow from data understanding to

deployment of an analytical model of a data science

project begins at framing the problem at hand, a task

that is typically business-oriented and requires human-

to-human interaction. However, the next three steps:

data understanding, feature extraction, and model

building that come next in the pipeline are the key to

successful data science projects. Failing to fully

understand the requirements of each of these three

steps can negatively affect the performance of the

proposed system. Hence, the current study tries to

answer the following question “What are the

requirements of a successful data science project?” To

answer this question, we will use the solution that we

built to measure the relevance of local search results of

small online e-businesses and submitted to Kaggle data

science platform to shed light on why our solution did

not achieve a top position among other competitors.

Evaluation of the design that we submitted to the

competition is going to be carried out in the spirit of the

three winning submissions. Our results revealed that

well-performed data preprocessing, well-defined

features, and model ensembling are critical for

building successful data science projects. Such a

clarification provides insight into specific aspects of

model design to help others including Kagglers avoid

possible mistakes while approaching their data science

projects.

Keywords: Data Science Pipeline, E-businesses, Kaggle

Competition, Model Ensembling, Relevance Prediction.

1. INTRODUCTION

Data science (DS) is the art and science of acquiring

knowledge through data [1]. In other words, it is about

how to obtain data, and use it to extract knowledge and

gather insights that we can use to make informed

decisions and predictions. As we will see in more detail

in the next section, DS pipeline involves several steps:

Frame the problem, understand the data, extract features,

modeling, and analysis, present results, and finally

deploy code.

The large volume of data that is generated every day in

recent years, the speed at which data is generated, and

heterogeneity of data (the three characteristics of Big

Data) can explain why people are interested today in DS

more than before. For businesses, DS is able to provide

the data information that empowers organizational

processes for the sake of optimized efficiency and

revenue generation. DS methods are also able to derive

results and develop protocols to deal with different

scientific goals.

Many programming languages are available today for

data scientists to implement their projects. For instance,

Python is a general-purpose programming language that

is becoming more and more popular to do DS. R is also

very popular among data scientists. It was intended to

serve statisticians more through the graphics capabilities

and large statistical functions that the language is

augmented with. Scala is particularly well-suited for data

scientists (or data engineers) who are willing to work

with Apache Spark and to tackle Big Data applications

with ease. MATLAB has achieved in recent years a

widespread acceptance among engineers,

mathematicians, and scientists. However, it is not well-

suited for large software frameworks or string‐based data

wrangling but rather for numerical computations.

Founded in 2010, Kaggle is a type of crowdsourcing

knowledge service that uses different kinds of human

knowledge to solve complex and cognitive tasks. It was

established as a platform for predictive modeling and

analytics competitions. Companies and researchers can

post their data while statisticians and data miners can

experiment their approaches and compete against each

other to achieve the highest competition score.

Submissions of participants are scored based on how

successful they were meeting the requirements of the

given competition. At the end of the competition, hosts

give the winners compensation, which can be money,

knowledge, or job vacancies in one of the leading

business analytics companies like Google, Microsoft, or

Cloudera.

The goal of this study is to understand the requirements

of a successful data science project by providing an

evaluation of the model design that we submitted to

Kaggle two years ago to tackle the problem of measuring

the relevance of search results, given search query and

the corresponding response. The evaluation is going to

be addressed in the light of the solutions that came in the

first three positions. Upon conducting our evaluation, we

will consider only the three most critical stages of DS

projects, i.e., data preprocessing, feature engineering,

and model building. Such an evaluation can help data

scientists (including Kagglers) identify and manage

potential issues in their model designs.

The rest of the paper is organized as follows: Section 2

presents the different steps that are involved in a typical

data science project. Section 3 discusses the focus of this

study, which is Kaggle competition. The competition

mailto:mza004@live.aul.edu.lb
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Analytics

aimed to measure the relevance of search engine results.

Section 4 describes the solution that we submitted to

Kaggle competition some time ago to solve the problem

above. Section 5 gives an overview of the three

reference models that we are going to compare our

solution with. Section 6 provides the results of the study,

Section 7 discusses these results, and Section 8

concludes the study.

2. LITERATURE REVIEW

We need to give a high-level overview of the processes

of DS by highlighting the different phases that are

involved in any DS problem. DS pipeline consists of a

number of steps [2] as shown in Figure 1 below.

Following these steps means that the data scientist has a

clear research plan, a good understanding of the project’s

aims, and clear deliverables. Such a structured plan can

increase the project’s success ratio [3].

Figure 1 Data science pipeline [2]

1. Framing the problem means understanding the

context in which the problem occurs. The data

scientist in this phase should answer questions

that are related to the project like what is the

primary goal of the project, what is the benefit of

the project, what data and resources are needed,

how long is the project going to take, is it part of a

bigger strategic plan or one small project, and

what are the deliverables [3]. Answering these

questions would allow stakeholders to understand

what, how, and why an individual project should

be undertaken. It would tell everyone else what to

do and what is the best course of action.

2. Understanding the data has to deal with three

tasks. First, the data scientist should be able to

answer some preliminary questions about the data

before going into analyzing it like is it readily

available or should be provided by a third party,

how big is it, is it sufficient to represent all the

population, does it have missing values, noise,

outliers or other inconsistencies. Second, the data

scientist needs to prepare the data and get it into a

standard format for use in subsequent steps. This

task has three requirements [4]: (1) data cleaning,

which aims to remove noise, fill missing fields,

and correct inconsistencies. (2) Data integration,

which seeks to combine data from varied and

different sources into coherent data storage. (3)

Data transformation helps to convert the data into

a usable and understandable form. Third, and to

gain a deeper understanding of the data, the data

scientist needs to do Exploratory Data Analysis

(EDA). This task includes trying different

methods to analyze the data to understand how

variables (i.e., features) are interacting with each

other, the distribution of data, and whether there

are outliers or not. Data visualization is also an

important part of data analysis. Scatterplots,

histograms, line graphs, bar charts, and box plots

can be helpful for discovering existing patterns,

correlations, and deviations [5].

3. Extracting features from raw data is among

dimensionality reduction techniques. It aims at

finding the most compact and informative features

for a given problem [6]. This task can be

decomposed into two steps: (1) Feature

construction, which helps to convert raw data into

a set of useful features and can be considered a

preprocessing transformation step. (2) Feature

selection which aims at reducing the initial set of

features to those that retain enough information

for obtaining good results. However, which

features will end up being used for the project is

an open question in DS and machine learning.

4. Modeling (also referred to as model building) is

the next phase after features have been extracted.

In this phase, the data scientist uses models,

domain knowledge, and insights learned from the

previous steps to answer the research questions.

The techniques used here are borrowed from

machine learning, data mining or statistics. A

machine learning algorithm can be run, for

example, to measure customer loyalty, predict

stock prices, or segment customers into different

categories based on certain criterion. Typically,

building a model is an iterative process that

involves selecting variables, executing the model,

and model diagnostics to see if the results are

achieving the project’s goals and satisfying the

customer’s needs or not.

5. Presenting the project’s results to the customer

is the next step after modeling. This step includes

describing the work that has been done and the

results that have been achieved. This can be done

in many ways ranging from presentations to

research reports.

6. Deploying the project’s code (using GitHub or

personal websites for example) would allow it to

be run by other people in the future. Code

deployment typically includes preparing some

documents that show how the code works, and

some way to test that the code operates

successfully.

The previous description of DS pipeline gives a wrong

intuition that these processes are linear but in fact, as

shown in Figure 1, this process is highly iterative, and it

is common to go back and redo some steps [7]. It is also

worth noting here that this set of processes is intended

for a DS project with a limited number of modules. A

project with millions of real-time processes would need

a different approach that lies out of the scope of this

study.

In the next section, we will take a look at the details of

Kaggle’s competition for finding the relevance of search

results, and why this type of competition is important for

small online businesses.

3. KAGGLE COMPETITION

Kaggle’s competition Crowdflower Search Results

Relevance, the focus of this study, ran for around two

months in 2015 (started on June 29, 2015, and closed on

July 6, 2015). The goal was to create an open-source

model that can automatically measure the relevance of

search results of an e-commerce site. Such type of

competition will offer small business owners a model to

test against and to match the experience provided by

more resource-rich companies. Prizes of the competition

were as follows: 1
st
 place - $10,000, 2

nd
 place – $6,000,

and 3
rd

 place - $4,000.

The dataset used for the competition was provided by

CrowdFlower, a data mining, data enriching and

crowdsourcing company. CrowdFlower has had their

crowd evaluate searches from a handful of e-commerce

websites (Figure 2). Given an example query like ‘tennis

shoes’ and an ensuing result (‘Adidas running shoes’),

the goal was to score the result on relevance, from 1

(least relevant) to 4 (most relevant). CrowdFlower

generated 261 search terms for this purpose, and the list

of products and their corresponding search terms were

put together.

Figure 2 Data collection of Kaggle competition

The anonymized dataset was medium sized and

consisted of six attributes: id, query text, product title,

product description, median relevance (target variable)

and relevance variance of the query. Both the training

data and test data are available from CrowdFlower. The

data provided by CrowdFlower team contains about 10k

samples (i.e., training data with target responses) labeled

manually by CrowdFlower using the classes above, and

about 20k samples with unknown labels (i.e., test data

with no target responses). Solutions were evaluated by

using quadratic weighted kappa metric. However, two

difficulties were present to contestants during the

competition: (1) small amount of training data, and (2)

non-standard evaluation metric.

3.1. Relevance of Search Results

Each online retailer should have its search engine

tailored to the store. These information retrieval

mechanisms are typically connected to a database to

search for details of a particular product [8]. Hence, the

search facility has always been important for website

navigation [9] because they enable customers to find the

item that they are looking for both easily and efficiently

and without physically visiting multiple locations.

For small online businesses, measuring the relevance of

search results can help understand whether the search

facilities that they are using are efficient enough to

provide the information that a customer needs [10].

For e-businesses, evaluating the capacity of the search

engine is critical because users were found not willing to

invest more time or more effort to improve their

searching strategies [11]. They often settle on using

simple keywords for searching and viewing only the first

few pages of results by not going beyond 20 results. Too

many irrelevant results returned by search engines annoy

users, cause information overflow and can increase user

dissatisfaction [12].

However, to satisfy user requirements, the information

returned by the search engine as a result of the user

query must be both objective and subjective. It is only

the user who issued the query can decide whether the

query result satisfies her need or not, which entails that

the user should have the ability and knowledge to

determine whether the retrieved item is relevant or not

[13].

The next section will give an overview of the different

components of the solution that we submitted to Kaggle

two years ago to tackle this task.

4. CASE STUDY – PREDICTING THE

RELEVANCE OF SEARCH RESULTS

The case study (CS) that we are addressing in this study

is an open-source model that we built to estimate the

relevance of search results, given search query and

corresponding response [14]. This case study can be

used as an example to show how a DS project may not

give the expected results if the requirements of the three

main phases (Figure 3): data preprocessing, feature

extraction, and modeling are not fully met.

Figure 3 Block diagram of CS [14]

4.1. Data Preprocessing

Because the data is raw and contains information that is

irrelevant to the product, we had to remove undesired

content. The aim was to improve the quality of data and

make it acceptable for mining and analysis.

First, we extracted word tokens from the text by splitting

text using spaces. Second, we removed non-

alphanumeric characters from text. Irrelevant words,

such as stop words, articles, prepositions and pronouns,

were also ignored.

4.2. Feature Extraction

The data that we have has just some raw tuples of text

queries and product descriptions. Therefore, we had to

preprocess it to extract some value, and then transform it

to provide regular input data for machine learning

algorithms. For this sake, the first task we had to execute

is feature extraction. This was done by transforming the

raw text search attributes into valuable features for

running over machine learning algorithms. We describe,

below, how we used two methods for extracting

important features from the dataset.

1. Word Match Counting: In this step, we wanted

to find how many words in each text search that

match the product title and product description.

This will help to extract two numerical features

from the data. For this purpose, we used two

Python data manipulation packages: NumPy [15]

and SciPy [16]. Using the preprocessed data, we

transformed each list of words (from search text

attributes) to an array and then used NumPy

methods to intersect the search word vector with

product title and product description vectors,

respectively. This means that we merely counted

how many words are in each intersection.

2. TF-IDF: The importance of TF-IDF is that

instead of just using numeric values to represent

the number of word intersections, we can also

take into account word weights. For this, we used

the TfidfVectorizer class from another Python

package, which is scikit-learn. We can provide the

text as input and then use this class to calculate

weights. The new features that we extracted are

much more expressive now because they take into

account term weights. Large weight values refer

to rare terms while small weight values refer to

highly occurring terms across all documents.

4.3. Modeling
After producing the two most important features, as

described in the previous subsection, we are now ready

to apply machine-learning algorithms. Because the

primary goal of the CrowdFlower data is to predict the

relevance of search queries, the label attribute for this

study will be the median relevance of the search. To this

end, we applied two methods:

1. We first started by predicting the values of the

median relevance from the test set data by using

Support Vector Machine (SVM) [17]. SVM is a

supervised machine learning method that uses the

concept of decision hyper plane to define decision

boundaries. The algorithm takes labeled training

data and outputs an optimal hyper plane

categorizing new (text) examples.

2. After that, we used a more sophisticated

algorithm, which is the Random Forests, an

ensemble largely-used machine learning method

developed by Breiman and Cutler [18]. Random

Forests combine bootstrap aggregating and

random selection of features to build a set of

decision trees with controlled variance. In other

words, each decision tree is constructed by using

a random subset of the training data. In this way, a

random forest fits a set of decision tree classifiers

on multiple sub-samples of the data and then uses

averaging to control overfitting and enhance

accuracy.

Applying both SVM and Random Forests is a

straightforward process in Python using scikit-learn as

both algorithms share a common named functions for

training. Using the training data from CrowdFlower that

we now have as a Python dataframe, and the features

that we already extracted, we will apply three simple

steps for algorithm learning: initializing the model,

fitting it to the training data, and predicting the new

values. Initializing and fitting the train data will allow us

to predict the label attributes (search terms median

relevance).

4.4. Learning Models Benchmark

We applied four types of method combination: SVM

with word match counting based features, SVM with TF-

IDF based features, Random Forests with word match

counting based features and, Random Forests with TF-

IDF based features. The goal was to predict the median

relevance values (label attributes). The results have

shown that Random Forests with TF-IDF achieved the

best results (highest score), which is 0.59211. Other

results are as follows. Random forests with match

counting: 0.53834, SVM with TF-IDF: 0.57654 and

SVM with match counting: 0.51241.

As we can see, while CS model followed the main points

of a typical DS project, it missed out some important

details. For example, data preprocessing was limited to

data cleaning and ignored some other critical tasks such

as word correction/replacement, stemming,

lemmatization, and dimensionality reduction. It used

only two types of features: word count and word weight,

for training and testing, and single modeling (based on

Random Forests) to train the model and give results.

The next section will provide an overview of the

different components included in the three submissions

that occupied the top positions in the competition.

5. REFERENCE MODELS

In this section, we are going to address the models that

took the first three positions in Kaggle 'Search Results

Relevance' competition (Figure 4). The first winner

(RF1) was Chenglong Chen, a Ph.D. graduate from

Guangzhou, Guangdong, China. The second winner

(RF2) was a team formed by Mikhail Trofimov,

Stanislav Semenov, and Dmitry Altukhov. The third

winner (RF3) was ‘Quartet’ team, formed by Maher

Harb, Roman Khomenko, Sergio Gamez, and Alejandro

Simkievich. They were from Canada, Ukraine, Spain,

and Brazil, respectively. Maher Harb is a Physicist and

data scientist, Roman Khomenko is a senior software

developer and security researcher, Sergio Gámez is

computer vision researcher, and Alejandro Simkievich is

a technology entrepreneur and CEO at Statec.

Figure 4 First three winners of Kaggle competition

5.1. Reference Model One

This solution [19], which won the first prize of the

competition, consisted of three major parts:

preprocessing, feature extraction/selection, and modeling

techniques and training. The details of RF1 are shown in

Figure 5.

Figure 5 Flowchart of RF1

5.1.1. Preprocessing

For preprocessing, the design used some steps to clean

up the text as follows:

1. Dropping HTML tags: the author used bs4

library to clean up HTML tags in the production

description field of the data.

2. Word Replacement: the authors performed word

replacement/assignments for example spelling

correction and synonym replacement to align

those words with the same or similar meaning.

For example, refrigirator refrigerator and

bicycle, bike bike. In addition to these two

types of word replacement, the author also applied

other replacements for better data processing such

as hard disk hard drive and mac book

macbook.

3. Stemming: the author also used stemming before

generating features like counting features and

BOW/TF-IDF features. For this sake, he used

Porter stemmer and Snowball stemmer from

NLTK.

5.1.2. Feature Extraction/Selection

For this purpose, the contestant has developed three

major types of features: counting features, distance

features, and TF-IDF features.

1. Counting Features: for this kind of features, they

used some features including (1) Basic Count

Features (i.e. the count of n-gram, count & ratio

of digit, count & ratio of unique n-gram, and

description missing indicators). (2) Intersect

Counting Features (i.e. count & ratio of a’s n-

gram in b’s n–gram). (3) Intersect Position

Features (i.e. statistics of positions of a’s n-gram

in b’s n-gram, and statistics of normalized

positions of a’s n-gram in b’s n–gram).

2. Distance Features: using Jaccard coefficient and

Dice distance, the contestant computed two types

of features: Basic Distance Features and

Statistical Distance Features.

3. TF-IDF Based Features: the contestant has

extracted various TF-IDF features (i.e. Basic TF-

IDF Features and Co-occurrence TF-IDF

Features) and the corresponding dimensionality

reduction version via SVD (i.e., LSA). He also

computed the (basic) cosine similarity and

statistical cosine similarity.

4. Other Features: this included Query Id (one-hot

encoding of the query (generated via genFeat id

feat.py).

Feature selection followed feature extraction. Feature

selection can be helpful in identifying some possible

well-performed feature set to train the model with and

thus reducing the computation burden. The contestant

adopted the idea of “untuned modeling” used by Marios

Michailidis and Gert Jacobusse to solve Microsoft

Malware Classification Challenge on Kaggle. For

features of high dimension (e.g. feature set including raw

TF-IDF features), he used XGBoost with linear booster

(MSE objective). For features of low dimension, he used

ExtraTreesRegressor from scikit-learn. Using ensemble

selection, it is possible to train a model library with

various feature sets (as shown next) and to pick out the

best ensemble within the model library.

5.1.3. Modeling

This solution used ensembling for model building.

Ensembling (or ensemble learning) is the process of

combining more than one predictive model to produce a

new model that is expected be more accurate than any

other individual model. The solution consisted of two

main steps: (1) training the model library using different

models, various parameter settings, and different subsets

of features. (2) Generating an ensemble submission from

the model library predictions using bagged ensemble

selection. For this phase the following techniques were

utilized:

1. Cross Validation Methodology. The

performance was estimated using cross-validation

within the training set.

2. Model Objective and Decoding Method. In this

competition, submissions are scored based on the

quadratic weighted kappa, which measures the

agreement between two ratings. This metric

typically varies from 0 (random agreement

between raters) to 1 (complete agreement between

raters).

3. Sample Weighting. The variance of the relevance

scores, included in the data, was used as a

measure of the confidence of the ratings and to

weight each sample.

4. Ensemble Selection. For a supervised learning

method, the contestant used ensemble selection to

generate an ensemble from a model library.

Bagged ensemble selection [20] was used for

ensemble selection. Ensemble selection is able to

build an ensemble that is optimized to an arbitrary

metric (such as quadratic weighted kappa used in

this competition). In addition, the contestant has

applied a number of modifications to the original

algorithm. (1) The model library is built with

parameters of each model guided by a parameter

searching algorithm. (2) Model weight

optimization is allowed in the procedure of

ensemble selection. (3) Random weight was used

for ensembling model similar

to ExtraTreesRegressor.

Without any stacking or ensembling, the best (Public

LB) single model they have obtained during the

competition was an XGBoost model with linear booster.

It is with Public LB score: 0.69322 and Private LB

score: 0.70768. Apart from the counting features and

distance features, it used raw basic TF-IDF and raw co-

occurrence TF-IDF.

This solution is based on the use of Python version 2.7.8

and some dependencies including numpy, scipy, scikit-

learn, pandas, NLTK, bs4, hyperpot, keras, XGBoost,

and ml_metircs. In addition to Python packages, the

solution also used rgf and libfm. In particular, Pandas

was helpful for feature engineering, NumPy for data

manipulation, TfidfVectorizer and SVD from Sklearn for

extracting text features, and XGBoost, Sklearn, keras

and rgf for model training.

5.2. Reference Model Two

The second solution [21], which came in position #2 of

the competition, was based on three key ideas: query

expansion, model stacking, and custom class separator.

Their solution consisted of the following steps: text

preprocessing, query expansion, feature extraction,

model training and ensembling, and optimizing class

separators.

5.2.1. Text Preprocessing

For text preprocessing, the team applied first some word

correction/replacement in both query and title such as

hardisk hard drive, and extenal external. Stemming

was applied next to all queries and titles using nltk

package. Finally, lemmatization was applied to the

query, title and description using

nltk.stem.wordnet.WordNetLemmatizer().

5.2.2. Query Expansion

The team used query expansion techniques to deal with

the issue of short search queries. To this end,

information from related titles was used to make queries

longer, as follows: (1) each query was concatenated to

all respective product titles having label = 4. (2) Top n

(10 to 15) most frequent words were extracted from the

product title in descending order. Top n words are called

“expanded query.”

5.2.3. Feature Extraction

Five groups of features were extracted for this

competition:

1. Group 1: built using some features such as the

number of words in query, the number of words

in title, etc.

2. Group 2: built using expanded query based on

top 10 words. Example features include number

of words from expanded query that are present

in title, compression distance between

expanded query and title, etc.

3. Group 3: same as Group 2 but based on top 15

words.

4. Group 5: this group used letter frequencies in

query and title using the following ratios as

features: (FreqQuery + A) / (FreqTitle + B) /

(query length), where A and B are constants that

maximize local score (obtained from cross-

validation).

5. Group 5: used features such as word2vec

similarities between title and query, and vector

between mean of words in title and words in

query (using word2vec pertained embedding).

5.2.4. Model Training and Ensembling

This solution used average predictions of four different

models. Each model used a different set of features.

https://github.com/dmlc/XGBoost/releases/tag/v0.40
http://scikit-learn.org/stable/
https://github.com/fchollet/keras/releases/tag/0.1.1
http://stat.rutgers.edu/home/tzhang/software/rgf/

1. Support Vector Regressor 1: This model used

the following feature groups: Group 1, Group 2,

Group 4, and Group 5. The team concatenated

expanded query (on top 10 words) and title, used

TF-IDF transformations on 'char' n-grams from 1

to 5, and selected 300 components of SVD

decomposition. All features were scaled to [0, 1]

range and the model was trained with

1/(1+variance) weights.

2. Support Vector Regressor 2: this model using

the following feature groups: Group 1, Group3,

Group 4, and Group 5. The team concatenated

expanded query (on top 15 words) and title, used

TF-IDF transformations on 'char' n-grams from 1

to 5, and selected 400 components of SVD

decomposition. All features were scaled to [0, 1]

range and the model was trained with

1/(1+variance) weights.

3. Stacked model 1: This model was built on

original (not expanded) queries. This model was

built based on some small per-query models that

do not use the whole dataset for training. They

were built only on BoW extracted from train+test

union.

4. Stacked model 2: This model is the same as

Stacked model 1 except that this one is built on

expanded queries based on top 10 words.

5.2.5. Optimizing Class Separators

The most important part is the transition from raw

outputs to class labels. Straightforward rounding from

predictions to integers gives very poor results. Therefore,

and for each cross-validation iteration, optimal class

borders were found via the following routine: scale

model outputs to [0, 1] range. Perform exhaustive search

over all reasonable borders with 0.01 step size. Custom

class separators were found very valuable as they

allowed the team to take advantage of evaluation metric.

All single models scores were in the range [0.703, 0.707]

depending on random see and appropriate class

separators. Models {1, 2} and {3, 4} produced very

similar results. Therefore, it is enough to ensemble

Model 1 and Model 4 to get a decent score.

The code was run on Ubuntu machine and the following

software: python 2.7.6, numpy, pandas, scikit-learn,

scipy, nltk, BeautifulSoup, tsne, gensim, and

backports.lzma.

5.3. Reference Model Three

The third solution [22], which came in position #3 of

the competition, consisted of the following steps:

text preprocessing, dimensionality reduction,

feature engineering, modeling, rounding results,

and ensembling individual models. The details of

RF3 are shown in Figure 6.

Figure 6 Block diagram of RF3

5.3.1. Data Preprocessing

Because the original dataset was raw text, a number of

tasks were performed to convert the raw data to one on

which machine learning algorithms can be trained. Data

preprocessing included:

1. Removing html tags and other non-text elements.

These elements were present since, presumably,

the datasets were generated programmatically by

parsing the web.

2. Removing stop words such as common articles,

prepositions, etc. (e.g. ‘the,' ‘a,' ‘with,' ’on’).

3. Using word-stemmers so that similar terms such

as ‘root’ and ‘roots,' or ‘game’ and ‘gaming’ are

converted to the same base word.

4. Generating basic features were by applying the

TF-IDF operation on the resulting text. The basic

functionality of TF-IDF algorithm is to assign a

value (between 0 and 1) to every word in a given

document, which in turn is part of an existing

corpus. The more frequent a term is in the

document and less common in the corpus, the

higher the value for such term.

5.3.2. Dimensionality Reduction

Because TF-IDF creates a feature for every token in the

corpus, dimensionality reduction was applied to the

result of data preprocessing to work with 225-250

features instead of thousands of features. For this

purpose, truncated singular value decomposition (SVD)

was used by the team.

5.3.3. Feature Engineering

The following sets of features were used during the

training and testing of the models:

1. N-gram similarity features: 14 features were

generated through the evaluation of similarity

between unigrams, bigrams, and trigrams

extracted from the query and the product title &

description strings. Some of those features are

boolean while others are similarity scores between

the n-gram and the search string.

2. Query-product name similarity features: A

tailored algorithm was developed by the team to

extract the main noun from the product title and

then performed a similarity measure between the

query and the extracted noun. This was done with

the help of a set of rule-based regular expressions

that were carefully crafted to remove all

unnecessary descriptions, prefixes, suffixes, etc.

For example any phrase following the words

“for,” “by,” and “with” was removed; sizes &

colors were removed, and so on. Finally, the last

two words in the cleaned title were regarded as

the main product.

3. Alternative query similarity features: For each

of the 261 unique queries, the team created a

corpus by combining all titles associated with that

query, extracted the top trigram, and used it as an

alternative query. The idea behind this approach

was to capture the correct product implicated

when the query did not have similarity with the

product title, which could be an issue when the

search query is a brand name.

4. Intra-title similarity features: The idea behind

this set of features was to use the group of titles

with the same relevance and within the same

query as a reference point and measure similarity

of all individual titles within that query to that

benchmark. For example, if a particular query has

40 labeled titles (10 per relevance class) then

various similarity measures between each title

(both labeled and unlabeled) and the four groups

are constructed.

5. Antonym feature: Because some queries

performed particularly bad when compared to

hand-labeled predictions in some particular cases,

the team developed some additional rules to

address this issue. One such case was when an

antonym of a noun in the query was in the product

title or description (e.g., query: “men shoes,”

product title: “beautiful women shoes”). A

boolean variable indicating whether an antonym is

present (1) or not (0) was created. This was done

only for the most common antonyms.

5.3.4. Modeling

A variety of models were used for supervised learning

including SVM, ANN, gradient boosted regressors,

kNN, and random forests. For some of the models, both

the classification and regression versions (e.g., SVM

classifiers and SVM regressors) were created. The

solution also used alternative implementations of the

same model (e.g. using both XGBOOST package and

H2O to build gradient boosted regressors). The reason

for having a wealth of different models is to use them in

ensembling and building of second-layer models.

5.3.5. Rounding Regression Results

This phase included rounding the regression predictions

to integers using specially developed thresholds that

optimize the kappa score. The team used experiments on

the cross-validation folds to determine the optimal

rounding limits for rounding predictions obtained

through regression.

5.3.6. Ensembling

This phase included ensembling individual models and

building second-layer models. The winning model was

an ensemble of single-layer ANN, a single-layer SVM,

and a second-layer ANN (with features derived from

over 20 single-layer models). The details of this two-step

ensemble model are as follows:

1. Step 1: Ensemble of first-layer ANN (30%

weight) and second-layer ANN (70% weight).

The averaging is applied to the unrounded

predictions, and the optimal rounding thresholds

were applied after averaging.

2. Step 2: Ensemble of the predictions obtained

from step 1 and SVM classifier, according to the

following expression: floor (0.8*step1 +

0.35*SVM).

SVM was built using scikit learn (hyperlink), artificial

neural networks were built using keras (which in turn

outsources some tasks to theano) on Python, while GBM

models were built using the XGBOOST and H2O R

packages.

We can see that the three reference models discussed

above show a strong commitment to the major critical

tasks included in the DS pipeline. Various data

preprocessing steps (e.g., cleaning, word

replacement/correction, stemming, lemmatization, etc.)

were applied. Four types of features (i.e., matching,

similarity, meta and attribute features) were extracted

and model ensembling for the model building was

adopted.

The next section will show the differences between the

four models regarding the three major phases of a typical

DS project: data preprocessing, feature engineering and

model building.

6. RESULTS

The study has addressed the different phases involved in

the building of the case study model (i.e. CS) as well as

the three reference models (i.e., RF1, RF2, and RF3).

The three main steps (i.e., preprocessing, featuring

engineering, and modeling) of each model were

discussed in a rational order that shows how each step

contributes to the next step. Table 1 below shows which

model is involved in which data preprocessing activity.

Table 1: Preprocessing steps used by each solution

Data

Cleaning

Word

Replacement

/Correction

Stem

ming

Lemmatiz

ation

CS √ × × ×

RF1 √ √ √ ×

RF2 √ √ √ √

RF3 √ × √ ×

Table 2 below shows types of the features used by each

of the four models.

Table 2: Types of the features used by each solution

 Matching

Features

Similarity

Features

Meta

Features

Attribute

Features

CS √ × × ×

RF1 √ √ √ ×

RF2 √ √ √ ×

RF3 √ √ √ √

https://github.com/dmlc/xgboost
https://github.com/h2oai/h2o-2

Table 3 below shows whether a model has applied single

modeling or ensemble modeling and the techniques

adopted by each model.

Table 3: Type of modeling used by each solution

 Single

Model

Ensemble

Model
Techniques

CS √ × Random forest

RF1

× √

XGBoost, regressors, SVR,

ridge, keras NN, RGF

regression

RF2
× √

Regressors, random forest,

linear SVC, linear SVR

RF3

× √

SVM, ANN, gradient boosted

regressors, kNN, random

forests

Implementation wise, all the four models used different

Python packages. Also, RF3 used some R packages,

while RF1 used rgf and libfm. All the four models were

built using Windows platform except RF2 which used

Ubuntu operating system for its experiments.

The next section will provide an interpretation of the

results that we have obtained in this section.

7. DISCUSSION

The previous section has shown how the four models are

different from each other regarding the three major parts:

data processing, feature engineering, and modeling.

Obviously, there is a large gap between CS model and

the other three models while this gap is minimized

between any of the reference models and the other two

models.

Data preprocessing is concerned with removing

undesired content from raw data and improving data

quality. The reason that CrowdFlower provided noisy

data is that it wants to mimic a real life scenario in which

noisy HTML snippets and unnecessary information are

present. In our model, data preprocessing was limited to

data cleaning while ignoring other critical processes such

as word correction/replacement, stemming, and

lemmatization. For example, word

replacement/correction is very important to align words

with the same or similar meaning. While using data

cleaning, word correction/replacement and stemming

was critical, the use of word lemmatization seems to

have no significant effect on the final result of this

particular competition.

All contestants were interested in predicting the feature

“Median Relevance.” Finding how the query is related to

product titles and descriptions would help to find certain

values for this feature. Feature engineering was an

important factor for winning an advanced position in this

competition because the quality of the models was

enhanced by creating ad-hoc features that allow machine

learning models to make better decisions. For the three

reference models, the contestants were able to select the

most significant features from a pool of features.

Features that are based on similarity (using for example

cosine similarity, Jaccard similarity or Word2Vec

Distance) were important. On the other hand, CS model

used only two features for training and testing: word

count features and weight features. These two features

were used for calculating the correlation or distance

between query and product title/description.

Regarding system modeling, our submission was limited

to using an individual model for providing results.

However, all the other three submissions used model

ensembling to give results. One of the reasons that the

other models gave better results than ours is that the

product of model ensembling is in general better than

any single model because the latter approach can correct,

at least in part, errors resulting from variance, bias, and

irreducible errors associated with the performance of

almost every individual model.

The next section will give a brief conclusion about the

most important points/discoveries discussed in this

article.

8. CONCLUSION

The goal of this study is to understand the requirements

of a successful data science project. This is done through

providing an evaluation of the model design that we

submitted to Kaggle to measure the relevance of search

results of small online businesses. The study sheds light

on specific aspects of model design to help others

including Kagglers avoid possible mistakes while

approaching their data science projects.

In order to build a reliable system that works efficiently

under different circumstances, we need to test different

features, different models, different machine learning

tasks and different ensembling and rounding strategies.

Nevertheless, testing so many different ideas can take a

lot of time and much effort.

Working as a team with different perspectives and

outlooks yet complementary skills can create a diversity

of approaches and views on how to solve the same

problem. Business wise, more companies rely on hiring

a team of specialists (if the budget was big enough)

instead of relying on a single expert person. The reason

is that when a project is divided into smaller modules,

each member is assigned a specific area and particular

set of functions. However, exceptional data scientists can

win competitions with no work team, and this particular

competition is one of them.

Python programming language is absolutely an

inevitable solution for all data scientists. Besides that the

language is simple to learn and has an active online

community, it has pre-built DS modules that can be used

by users at all levels of experience. Compared to its main

competitor (which is R), when it comes to free tools,

Python is the best option to handle a DS project that

requires a bundle of statistics, numerical computation,

and web parsing capabilities.

9. REFERENCE

[1] F. Provost and T. Fawcett, "Data science and its

relationship to big data and data-driven decision

making," Big Data, vol. 1, pp. 51-59, 2013.

[2] F. Cady, The Data Science Handbook: John

Wiley & Sons, 2017.

[3] D. Cielen, M. Ali, and A. Meysman,

Introducing data science: big data, machine

learning, and more, using Python tools:

Manning Publ., 2016.

[4] S. García, J. Luengo, and F. Herrera, Data

preprocessing in data mining vol. 72: Springer,

2014.

[5] J. Han, J. Pei, and M. Kamber, Data mining:

concepts and techniques: Elsevier, 2011.

[6] A. Destrero, S. Mosci, C. De Mol, A. Verri, and

F. Odone, "Feature selection for high-

dimensional data," Computational management

science, vol. 6, pp. 25-40, 2009.

[7] T. Ojeda, S. P. Murphy, B. Bengfort, and A.

Dasgupta, Practical data science cookbook:

Packt Publishing Ltd, 2014.

[8] F. Lazarinis, "Evaluating the searching

capabilities of e-commerce web sites in a non-

English language: A Greek case study," Online

Information Review, vol. 31, pp. 881-891, 2007.

[9] A. Lee and M. Chau, "The impact of query

suggestion in e-commerce websites," in

Workshop on E-Business, 2011, pp. 248-254.

[10] R. Palanisamy, "Evaluation of search engines: a

conceptual model and research issues,"

International Journal of Business and

Management, vol. 8, p. 1, 2013.

[11] P. Schmutz, S. Heinz, Y. Métrailler, and K.

Opwis, "Cognitive load in ecommerce

applications: measurement and effects on user

satisfaction," Advances in Human-Computer

Interaction, vol. 2009, p. 3, 2009.

[12] M. Markland, "Does the student's love of the

search engine mean that high quality online

academic resources are being missed?,"

Performance measurement and metrics, vol. 6,

pp. 19-31, 2005.

[13] M. Cao, Q. Zhang, and J. Seydel, "B2C e-

commerce web site quality: an empirical

examination," Industrial Management & Data

Systems, vol. 105, pp. 645-661, 2005.

[14] M. Z. Al-Taie, S. M. Shamsuddin, and J. P.

Lucas, "Predicting the Relevance of Search

Results for E-Commerce Systems," Int. J.

Advance Soft Compu. Appl, vol. 7, 2015.

[15] S. v. d. Walt, S. C. Colbert, and G. Varoquaux,

"The NumPy array: a structure for efficient

numerical computation," Computing in Science

& Engineering, vol. 13, pp. 22-30, 2011.

[16] E. Jones, T. Oliphant, and P. Peterson,

"{SciPy}: open source scientific tools for

{Python}," 2014.

[17] C. Cortes and V. Vapnik, "Support-vector

networks," Machine learning, vol. 20, pp. 273-

297, 1995.

[18] L. Breiman, "Random forests," Machine

learning, vol. 45, pp. 5-32, 2001.

[19] C. Chen. (2017, Accessed: July 7, 2017).

"CrowdFlower Winner’s Interview: 1st place".

Available: http://jikeme.com/crowdflower-

winners-interview-1st-place-chenglong-chen

[20] R. Caruana, A. Niculescu-Mizil, G. Crew, and

A. Ksikes, "Ensemble selection from libraries

of models," in Proceedings of the twenty-first

international conference on Machine learning,

2004, p. 18.

[21] M. Trofimov. Kaggle 'Search Results

Relevance' 2nd place solution [Online].

Available: https://github.com/geffy/kaggle-

crowdflower/blob/master/description.pdf

[22] T. Quartet. (2017, Accessed: July 7, 2017).

CrowdFlower Winners' Interview: 3rd place.

Available:

http://blog.kaggle.com/2015/07/22/crowdflower

-winners-interview-3rd-place-team-quartet/

Biography
Mohammed Zuhair Al-Taie is currently a Ph.D.

candidate at the Universiti Teknologi Malaysia (UTM),

Faculty of Computing (FC). He holds master's degree in

computer science and communication from the Arts,

Science and Technology University (AUL) in Lebanon

and bachelor's degree in computer science from Al-

Mustansiriya University in Iraq. He has published a

number of studies on topics like social networks, e-

government, and e-commerce as well as two books on

social network analysis. His fields of interest include

machine learning, social networks, and advanced web

technologies. Previously, Mr. Taie was a university

teacher in Iraq where he taught modules at the

undergraduate level in subjects related to artificial

intelligence, Web technologies, and software

engineering. He has been a reviewer for Social Network

Analysis and Mining (SNAM) journal for several years.

His Google scholar page can be found here

https://scholar.google.com/citations?user=JdLRwWsAA

AAJ&hl=en.

Naomie Salim is currently a Professor in the Faculty of

Computing at the Universiti Teknologi Malaysia. She

has a Master’s Degree in Computer Science from the

Western Michigan University and a Ph.D. in Information

Studies (Chemoinformatics) from the University of

Sheffield. She has taught at both undergraduate and

postgraduate levels in subjects related to databases and

information systems, and her research interests include

information retrieval and chemoinformatics. Her Google

scholar page can be found here

https://scholar.google.com/citations?user=PcYJDfoAAA

AJ&hl=en.

Obasa Adekunle Isiaka is currently a Chief Lecturer in

Department of Computer Science, Kaduna Polytechnic,

Kaduna, Nigeria. He obtained a Ph.D. degree in

Computer Science from University Technology

Malaysia. His Master degree in Computer Science was

obtained from Federal University of Technology, Akure

while his Bachelor degree in Industrial Mathematics was

bagged at University of Benin, Benin City, Nigeria. He

has more than 20 years of lecturing and research

experience. He is currently an external examiner in

Computer Science to some institutions. He has several

publications to his credit.

http://jikeme.com/crowdflower-winners-interview-1st-place-chenglong-chen
http://jikeme.com/crowdflower-winners-interview-1st-place-chenglong-chen
http://blog.kaggle.com/2015/07/22/crowdflower-winners-interview-3rd-place-team-quartet/
http://blog.kaggle.com/2015/07/22/crowdflower-winners-interview-3rd-place-team-quartet/

