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Leukemia is a type of blood cancer that affects White Blood 

Cells (WBCs) and causes bone marrow destruction. A Complete 

Blood Count (CBC) and bone marrow aspiration are the most 

frequent tests used to detect Acute Lymphoblastic Leukemia 

(ALL). If not identified early enough, the condition can be fatal. 

In this context, an intelligent framework is designed to detect 

hematological disorders like leukemia (blood cancer). The 

feature extraction was performed using Center Symmetric Local 

Binary Pattern (CSLBP), Gabor Wavelet Transform (GWT), 

and Local Gradient Increasing Pattern (LGIP). The framework 

combined the extracted features and then fed them into machine 

learning classifiers, including Decision Tree (DT), Ensemble, 

K-Nearest Neighbor (KNN), Naïve Bayes (NB), and Random 

Forest (RF)). The ALL-IDB2 database was utilized as the 

training set to create a balanced database with 260 blood smear 

images. Consequently, a recommended model was established 

using numerous individual and combined feature extraction 

methodologies to generate the optimum feature set. The 

investigational consequences demonstrate that the developed 

feature fusion strategy surpassed previous techniques, with 

97.49 ± 1.02% accuracy utilizing the Ensemble classifier. 
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Leukemia diagnosis, blood 
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1. INTRODUCTION 

Hematology analyzes blood and blood-forming structures, such as the identification, therapy, 

and cure of blood infection, myeloid tissue cells, cellular immunity disorders, fibrinolytic, and 

nutritive subsystems. Medical experts perform and evaluate various diagnostic procedures to 

support disease diagnostic and therapeutic specialists. They deal with blood and myeloid 

tissue to provide comprehensive diagnostic care to patients [1]. The volume and anatomical 

structure produced at any given time are determined by the needs of your body. Estimating 

how myeloid tissue cells respond to a medical situation may be more significant in some 

circumstances than establishing the patient's hematological condition. Medical professionals 

frequently analyze blood smear samples for abnormalities; if diseases are diagnosed, they 

perform a myeloid tissue biopsy and deliver a diagnosis within a brief time. 

As demonstrated in Figure 1A, the fundamental function of myeloid tissue is to create red 

blood cells (RBCs), platelets, and white blood cells (WBCs) [2]. Typically, RBCs are the cells 

grown the most and have the highest proportion (Figure 1B). The Complete Blood Count 

(CBC) is a hematological diagnostic procedure that produces data that can be utilized to 

identify a disorder. The CBC assesses the formation of all cell components, measures the 

patient's oxygen-carrying abilities via RBC counts, and checks the immune system via 

differential WBC counts. This examination facilitates the identification of anemia, various 

cancers, diseases, and a diversity of other disorders, along with the tracking of medication 

health consequences [3]. 

 

 
 

 

Figure 1: Blood smear components. (a) growth of blood cells in the myeloid tissue, (b) normal blood, 

and (c) blood during leukemia [4]. 

 

A variety of diseases can impact the approximate quantity of WBCs and their appearance on a 

blood film. This is evident in viral infections that increase WBCs, whereas the much more 

severe symptoms (as depicted in Figure 1C) are almost probably leukemias [1]. ALL-

leukemia cells are a kind of blood or myeloid tissue malignancy in which the body generates 

malignant WBCs. Due to this irregular blood cellular division, the blood, lymphatics, and 
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myeloid tissue are all affected, exposing the immunological system to risk [5]. They can also 

impede RBCs and platelet formation in the stem cells. Additionally, those malignant WBCs 

can enter the bloodstream and lead to damage to specific organs in the body including the 

brain, kidney, spleen, liver, and other organs, leading to the growth of further severe 

malignancies.   

Leukemia is classified as acute or chronic depending on how quickly it grows or worsens. 

Acute leukemia appears rapidly and spreads immediately. Depending on the level of infected 

cell, ALL-leukemia cells can be categorized as acute lymphoblastic or myelogenous leukemia 

[6]–[8]. This research concentrates on ALL although it is expected to have a greater chance of 

survival than other varieties. Leukemia can only be diagnosed with a comprehensive 

examination of stained blood smears. Manual sample collection in anomalies in slide 

preparation, leading in non-standardized, unreliable, and inconsistent evaluations due to its 

complicated structure of WBCs. As a consequence, an expense and reliable computerized 

framework is required vital to satisfy the need for truthful analysis and identification without 

being influenced by the knowledge, weariness, or operational exhaustion of medical experts. 

As a basis, numerous Computer Aided Diagnosis (CAD) techniques for assessing blast cells in 

blood images have been developed. 

This work provides a methodology for leukemia classification and examines the effect of 

various feature methods on the classification process. The key contribution of this study is to 

fuse the features extracted from blood seamer images in order to improve the overall accuracy 

and thereby reduce the misclassification error rate. The rest of the article is structured in the 

following manner. Section 2 presents a review of related research. Section 3 comprises an 

overview of the CAD system architecture, a description of the ALL-IDB database, image pre-

processing, feature extraction, feature fusion and classification, and performance 

measurements. Section 4 summarizes the experimental results were obtained by comparing 

numerous feature extraction to current methods. Lastly, Section 5 addresses the conclusion of 

the study. 

 

2. LITERATURE REVIEW 

In medical image computing and processing, particularly in the area of ALL, machine learning 

(ML) and image processing approaches have delivered exceptional achievements [9]. Various 

procedures are widely used to determine microscopic smears for the diagnosis of ALL-

leukemia cells. For the efficient recognition of these disease-causing disorders, a range of 

methodologies have been extensively utilized. The mechanisms presented comprise CNNs, 

supervised learning, feature extraction, and feature selection [10]. A brief review of some 

significant achievements from previous studies was provided. The study [11] intended to build 

an improved classification algorithm based on peripheral blood smear images that could 

categorize ALL-leukemia cells subtypes. Cytoplasmic vacuoles and the uniformity of the 

nuclear envelope of ALL-leukemia cells were the only geometrical features used in this study. 

Support Vector Machine (SVM), KNN, and Artificial Neural Network (ANN) with various 

measurement functions were considered and fine-tuned using the ALL-IDB2 database. 

Utilizing pre-trained AlexNet and fine-tuning, the authors in  [5] developed a deep CNN 

learning algorithm for the classify of ALL-leukemia cells and its subtypes based on the ALL-

IDB database supplemented using 50 private images. The paper [12] investigated and 

proposed a micro-pattern descriptor  for identifying cancer cells and non-cancerous cells. 

Accordingly, a developed framework was developed by combining two feature extraction 

approaches, Local Directional Number Pattern (LDNP), and the Multi-scale Weber Local 

Descriptor (MWLD) methods, and loaded through ML classifiers (DT, Ensemble, KNN, NB, 

and RF). Investigational consequences demonstrate that the designed feature methodology 

guaranteed an acceptable performance when compared to other current studies. 

The study [13] was concerned with building an effective automatic approach for identifying 

ALL-leukemia cells. The presented scheme comprised of two phases. The initial phase was to 

separate the WBCs. Relevant features including shape, statistical, geometry, and Discrete 
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Cosine Transform (DCT) were derived from the fragmented regions in the second phase. To 

classify the segmented ALL-leukemia cells as healthy or abnormal, numerous classification 

approaches were applied to the derived features. The authors of [14] recommended that blood 

smear images be used to identify WBCs using a YOLOv2-Nucleus-Cytoplasm systematic 

model. Particle Swarm Optimization (PSO) has been used to improve the Bag-of-Features 

(BoF) generated from WBC images of blood smears for identification. Leukocyte-Images for 

Segmentation Classification (LISC) and ALL-IDB have been used to determine the 

identification outcomes. On both the ALL-IDB1 and ALL-IDB2 databases, Optimized Nave 

Bayes (ONB) exceeded Optimized Discriminant Analysis (O-DA) method. The ONB 

classification algorithm, on the other hand, outperformed the ODA classification method on 

the LISC database. The article [15]  utilized deep CNNs to handle the ALL identification task 

. To provide a superior ALL-leukemia cells classification, the weighted ensemble of deep 

CNNs was investigated. The weights were calculated using the appropriate measurements of 

the ensemble candidates, including the Area Under the Curve (AUC), F1-score, and kappa 

coefficients. To generate a higher adaptation of the system, numerous data extensions and pre-

processing were applied and the C-NMC-2019 ALL database was used to train and test a 

developed framework.  

The authors of [16] presented a classification scheme for ALL-leukemia cells and its subtypes. 

Firstly, a thresholding procedure was used to differentiate the ROI of lymphoblast from bone 

marrow aspirations. CNN, i.e., AlexNet, was employed for categorization. For the evaluation, 

the 330 Images database was employed and the classification accuracy obtained was 97.78 %. 

The study [17] employed NB and KNN classifiers to categorize cancerous and benign cells 

based on geometric, color, statistical, and textural features. The accuracy of the categorization 

reached 92.8 % when 60 image smears were employed. The study [18] proposed a technique 

for classifying Acute Myeloid Leukemia (AML) and its subtypes M4, M5, and M7. Primarily, 

a color k-means method was performed for cell segmentation. Applying multi-class SVM 

classifier, classification was performed utilizing six statistical features. This resulted in 

segmentation accuracy of 87.00 % and classification accuracy of 92.90 %. The research 

utilized microscopic images of WBCs to design a computer-based enterprise development for 

identifying and categorizing chronic lymphocytic leukemia based on Enhanced Virtual Neural 

Network (EVNN) classification in [19]. The suggested scheme had the maximum accuracy in 

identifying and categorizing ALL-leukemia cells using WBC images. In terms of accuracy, 

specificity, sensitivity, and error rate, the proposed technique ranked 76.60%, 89.90%, 

97.80%, and 2.20 %, respectively.  

The study [20] presented a refined DL technique for accurate segmentation and categorization 

of WBCs. Preprocessing-based identification and segmentation were the two primary methods 

in the proposed approach. Simulated scans were performed with a Generative Adversarial 

Network (GAN) and standardized with color conversion throughout preprocessing. Pretrained 

deep architectures, including ShuffleNet and, DarkNet-53 were performed to extract the 

optimal deep features out of each blood smear image. Principal Component Analysis (PCA) 

was employed to choose more relevant features, which were then combined sequentially for 

identification task. To diagnose ALL, the authors of  [21] investigated  an effective leukemia 

classification algorithm that employed two texture features extracted from the nucleus image, 

i.e. LBP and GLCM approaches. The ALL-IDB2 database, which contains 260 (130 normal 

and 130 blast) blood smear images, was utilized to train a two-class classification algorithm. 

With classification performance of 93.84 % and 87.30 %, respectively, LBP texture features 

outscored GLCM texture features. The research paper [22] focused on a methodology for 

effectively identifying WBCs in complex blood smear images employing the Watershed 

Transform (WST) and circle fitting methodology. In preprocessing phases, the quantitative 

strategy incorporated segmentation and edge mapping derivation, and also parameterized 

circular estimation, that detected either isolated and overlapping WBCs, to differentiate 

overlapping WBCs. The system was estimated on a database of 384 WBCs images from the 

ALL-IDB and ASH image collections, with considerable overlap. 
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All of the earlier approaches outlined above have the limitation of classifying ALL cells from 

microscopic according to subtype. This research developed an intelligent framework for 

classifying blood smear images into healthy and leukemic blood cells. For feature extraction, 

the framework utilized CSLBP, GWT, and LGIP descriptor approaches. A balanced set of 260 

blood smear images from the ALL-IDB2 database was utilized as training and testing sets. 

Additionally, to tackle the most challenging features of identifying ALL-leukemia cells in 

microscopic blood images, a recommended model was constructed through using various 

independent and combination feature extraction techniques. 

 

3. METHODS AND MATERIALS 
 

3.1 System Architecture 

The presented scheme utilized blood smear images as data required to categorize ALL-

leukemia cells. To start, the methodology converted RGB color images to gray scale images 

and removed irrelevant regions to identify the areas of interest of normal and malignant cells. 

In addition, the approach evaluated at three various feature extractors: CSLBP, GWT, and 

LGIP. The CSLBP approach was being computed to extract a feature set from blood smear 

images using the ALL-IDB2 database. Subsequently, from the same blood smear images, the 

GWT and LGIP algorithms were also employed to extract two additional feature vectors. As 

training database, numerous individual and combination extracted features were generated and 

provided into the different classifiers. Lastly, applying five well-known predictors, the 

combined features were being applied to categorize blood smear images to categorize normal 

and abnormal blood cells. Figure 2 depicts the critical phases of the suggested design 

methodology. 
 

 
Figure 2: Workflow of proposed system 
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3.2  Image Pre-Processing 

In the pre-processing step, after transforming the original microscopic blood images from 

RGB to grayscale image, the region of interest was identified, cropped, and resized to an 

appropriate dimension of 256 x 256 pixels. To generate relevant information, the region of 

interest on the blood smear images was identified by a substantial fraction primarily the WBC 

cells region. Next, to achieve the enhancing effect and better classification performance, the 

contrast-limited adaptive histogram equalization method and the median filter were applied. 

Lastly, image adjustment was utilized to increase the performance of the blood smear images 

before they were fed into the feature extraction stage. 

3.3 Feature Extraction 

This stage entails extracting relevant features from input data to be utilized in identification 

tasks [23]. Three groups of features, including CSLBP, GWT, and LGIP, were suggested and 

designed in this work to differentiate blood smear images into normal and abnormal blood 

cells. Prior to implementing the fusion process, a normalization process was performed on the 

extracted feature sets, which is the most popular strategy for minimizing the range of 

numerical data. 

3.3.1 Center Symmetric Local Binary Pattern (CSLBP) 

Ojala et al. [24] presented the basic LBP  generator, which is a robust feature descriptor that 

utilizes both shape and texture data to describe facial features. The LBP generator assigns a 

labeling to each pixel in the image through thresholding the intensity values in each pixel's 3 

x3 neighborhood with the centered pixel intensity, then transforming the outcome to a binary 

representation applying Equation (1). 

 

      (   )   ∑     (     )

   

   

               ( ) 

 ( )   {
            
           

}                                  (2) 

 

where    symbolizes the pixel intensity of the central pixel (     ),     symbolizes the gray 

value of the eight nearby pixels, and  ( )  symbolizes the adaptive threshold operation 

function. Taking the data clockwise, beginning with the top left neighboring [25], yields the 

binary result. Figure 3 depicts the basic LBP generator. 

 

 
 

Figure 3: The Basic LBP generator 
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The LBP generator is difficult to apply in the scope of an area identifier since it provides 

extremely extended histograms. The strategy for measuring pixels in the neighbor was adapted 

towards another addition to the previous LBP generator to respond to the challenges. The 

central symmetrical pairings of pixels was examined rather than each pixel to a central pixel 

[26]. Heikkila et al. introduced a CSLBP depending on a localized neighborhood's centered 

symmetrical pair of pixels  [27]. The central pixel's value is omitted in CSLBP, as well as the 

image can only be processed utilizing 16 bins. A mathematical equation for the CSLBP 

generator is as follows:  
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where            (  ⁄ ) represent the gray values of pixel pairings on a circle of radius R that 

are center-symmetric with reference to the central pixel at (   ), and  ( )  is the adaptive 

threshold operational function.   In the same way, the CS-LBP works that certain gradient 

generators evaluate gray level variations within couples of contrary pixels in a neighborhood. 

A feature for every pixel of the area was generated in this work using the CS-LBP generator, 

that was influenced by the LBP generator, and then a collection of 16 features for every image 

was derived from the database of ALL-IDB2 images. 

3.3.2 Gabor Wavelet Transform (GWT) 

The local characteristics of an image, which including spatial localization, spatial frequency, 

and directional selection, are depicted using Gabor-wavelets. Gabor-wavelets therefore are 

utilized in a variety of disciplines, involving texture investigation and image segmentation 

tasks [28]. The spatial (2-D) Gabor filter is a Gaussian kernel function tuned throughout the 

spatial domain by a complicated sinusoidal plane wave (a plane wave for 2-D Gabor filters), 

expressed by, 
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Where the variables of   ̂  and  ̂  explicitly state the location of a light impulse in the 

peripheral vision,   is the direction of a Gabor function's regular to parallel stripes,   is the 

Gaussian standard deviation, and   is the spatial aspect ratio that designates the ellipticity of a 

Gabor function's support. Utilizing Gabor wavelets filters in 4 distinct scales and 6 directions, 

a collection of 48 features for every image was derived from the ALL-IDB2 image database. 

3.3.3  Local Gradient Increasing Pattern (LGIP) 
LGIP is a pixel-based binary image identifier which is robust to fluctuations in lighting and 

white noise. As a consequence, it can be operated to generate the binary vectors for the 

horizontal and vertical directions resulting through fractional image partition [29]. LGIP is 

used to represent the magnitude and direction of an increasing trend in local intensity. LGIP 

first computes gradients response in each pixel's 8 potential directions applying Sobel masking 

            as shown in Figure 4. According to the gradient value's sign, each mask's 

gradient value is encoded into a single bit (1 or 0). As a consequence, every pixel in the 

truncated CXR image is allocated an 8-bit coding identifier. The resulting bit is set to 1 or 0 if 

the mask for the pixel response is positive. Therefore, an 8-bit value is produced for every 

pixel, with each bit corresponding to the output of a certain mask. To speed up calculation, the 

eight bits can also be computed via intensity comparisons between the central pixel and its 

neighbors, as with the LBP generator. The Sobel gradient generator was utilized in this study 
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to improve stability in the presence of non-uniform light variations and random noise, and a 

collection of 37 features for each CXR image was derived from the ALL-IDB2 database. 

 

 
 

Figure 4:  Sobel gradient masks in eight orientations [29]. 

 

3.4 Feature Fusion and Classification 

The data combination has been utilized to a broad variety of ML and computer vision 

disciplines. Using a feature fusion method, an extracted feature vector that can be 

concatenated with another set of features created in the system design. Multi-feature fusion is 

significantly boost the model's predictability [25]. A fusion of feature vectors was proposed in 

this paper, which was conducted using a combination of CSLBP (1 x 16), GWT (1 x 48) and 

LGIP (1x 37) methods. Equations (8), (9), and (10) designate features derived by CSLBP, 

GWT, and LGIP, respectively. Equation (11) describes how the derived feature vectors were 

combined through concatenation procedure. 

 

              {                                        }                  ( )  

           {                                }                                   ( ) 

            {                                   }                                   (  ) 

      (               )     
   

 
   {                                    }   (  ) 

 

The CSLBP, GWT, and LGIP features were then combined with 101 features. This fusion 

sequence was provided to the classifiers to evaluate the recommended scheme and classify 

blast cells in blood smear images, and it functioned as the concluding input for both the 

training and testing the ALL-IDB2 database. ML algorithms were utilized to detect patients 

with leukemia in the proposed workflow. To achieve the objective of diagnosing ALL-

leukemia cells among normal and healthy individuals, five supervised ML classifiers, DT, 

Ensemble, KNN, NB, and RF classifiers, were applied for making the final predictions. 

3.5 Performance Metrics 

Performance metrics is employed to determine the parameter space and feature extraction 

outcomes from multiple models. To evaluate the proposed model's performance in the 

classification of ALL-leukemia cells, the confusion matrix was used to calculate 7 popular 

performance measures: accuracy, precision, sensitivity, specificity, F1-score, MCC, and 

misclassification rate metrics. Four different performance parameters, True Positive (TP), 

True Negative (TN), False Positive (FP), and False Negative (FN), were employed to generate 

the metrics defined by Equations (12)– (18). 
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4. EXPERIMENTAL RESULTS 

The recommended method's primary objective is to differentiate between normal and 

abnormal ALL-leukemia cells. In this section, extensive experimentation was carried out to 

evaluate the recommended approach's performance in terms of confusion matrix metrics, 

including accuracy, precision, sensitivity, specificity, F1-score, MCC and misclassification 

error rate. Furthermore, the method was compared to the most current existing methods.  

4.1 Database Description 

The investigation was concluded through utilizing ALL-IDB database , comprised of two 

image clusters ALL-IDB1 and ALL-IDB2 [30], and performance measurements. The 

identification systems' functionality was assessed using images of leukemic smears and also 

images of non-leukemic smears from the ALL-IDB2 database. The ALL-IDB2 database is a 

set of cropped regions of interest generated from the ALL-IDB1 database, and ALL-IDB2 

images have gray scale characteristics that are similar to ALL-IDB1 database. There are 260 

images throughout this database, half of which are healthy cells and half of which are blast 

cells. The database is labeled, ImIN_Y.jpg and it comprises a collection of the normal and 

blast cells' regions of interest. In the visual form, IN denotes a three-digit numeric value, 

whereas Y denotes a Boolean. As Y is 1, the raw sample equivalent to the patient is a normal 

one. When the value of Y is 0, conversely, the associated patient is diagnosed with ALL-

leukemia. Figure 5 shows two examples of images from the ALL-IDB2 database: healthy 

lymphocytes and probable blast cells. 
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Figure 5: Example images contained in the ALL-IDB2: healthy lymphocyte (first row) and 

lymphoblast cells (second row). 

 

4.2 Results and Discussion 

The recommended system's functionality was calculated employing extracted features 

generated from CSLBP, GWT, and LGIP values to recognize and classify ALL-leukemia 

cells. Numerous methodologies, each with its own set of features, as well as various 

combinations of CSLBP, GWT, and LGIP features, have been suggested. To see which 

scenario may achieve acceptable results, those derived features subsequently categorized 

utilizing five supervised classification models (DT, Ensemble, KNN, NB, and RF) with each 

scenario. Furthermore, the complete database was split into two groups: 80% for training the 

model and 20% for examining performance of the classifier through using holdout cross-

validation procedure. 

Using the DT (Table 1), Ensemble (Table 2), KNN (Table 3), NB (Table 4), and RF (Table 5) 

classifiers, the comprehensive category/class wise assessment from each scenario was 

measured by means of accuracy and average accuracy as (mean ± SD).  According to the 

results shown in table 1, it is concluded that combining the GWT and LGIP features (scenario 

6) together attained the maximum overall accuracy of 93.07 ± 4.27%, whereas the 

classification overall accuracy of features extracted from CSLBP (scenario 1) technique had 

the lowest recording 79.80 ± 6.85 % when the DT classifier method was employed. In the 

case of NB classifier use (Table 2), it can be observed that the maximum classification overall 

accuracy of 90.19 ± 4.48 % was attained along with combining features extracted from the 

CSLBP (16 features), and LGIP (37 features) approaches, however GWT technique gave the 

lowermost performance outcomes recording 80.76 ± 4.79% as compared to the other 

scenarios. 

 

Table 1: The quantitative classification accuracies of various modeling approaches based on the 
DT classifier. The bold values indicate the highest classification accuracy. 

Methods 
Extracted 

Features 

Per Class Accuracy (%) Overall 

Accuracy (%) Regular cells ALL affected 

CSLBP 16 83.46 ± 8.70 76.15 ± 8.65 79.80 ± 6.85 

GWT 48 90.38 ± 4.15 95.38 ± 2.37 92.88 ± 3.51 

LGIP 37 87.69 ± 7.43 88.84 ± 5.64 88.26 ± 5.76 

CSLBP + GWT 64 88.46 ± 5.12 92.30 ± 4.44 90.38 ± 3.51 

CSLBP + LGIP 53 89.61 ± 6.02 90.38 ± 5.51 89.99 ± 4.42 

GWT+ LGIP 85 92.69 ± 3.82 93.46 ± 3.02 93.07 ± 4.27 

CSLBP + GWT + 

LGIP 
101 91.15 ± 4.07 89.99 ± 4.51 90.57 ± 3.19 
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Table 2: The quantitative classification accuracies of various modeling approaches based on the 
NB classifier. The bold values indicate the highest classification accuracy. 

Methods 
Extracted 

Features 

Per Class Accuracy (%) 
Overall 

Accuracy (%) Regular cells ALL affected 

CSLBP 16 89.61 ± 3.16 85.76 ± 6.29 87.69 ± 3.64 

GWT 48 83.07 ± 8.14 78.46 ± 5.79 80.76 ± 4.79 

LGIP 37 84.99 ± 5.87 83.84 ± 5.67 84.42 ± 8.38 

CSLBP + GWT 64 90.76 ± 4.86 80.76 ± 5.43 85.76 ± 4.64 

CSLBP + LGIP 53 91.53 ± 4.36 88.84 ± 5.86 90.19 ± 4.48 

GWT+ LGIP 85 93.07 ± 2.37 82.69 ± 9.46 87.88 ± 5.87 

CSLBP + GWT + LGIP 101 91.92 ± 4.23 84.99 ± 6.24 88.46 ± 6.72 

 

 

According to the results in the Tables 3, 4, and 5, it is revealed that fusing the CSLBP, GWT, 

and LGIP features (scenario 7) together achieved the maximum overall accuracy of 97.49 ± 

1.02%, 94.99 ± 2.74%, and 94.80 ± 2.40% by using Ensemble, KNN, and RF classifiers 

respectivel. Conferring to the consequence obtained in Tables 1–5, fusing the CSLBP, GWT, 

and LGIP features (scenario 7) together recorded the highest average accuracy of 97.49 ± 1.02 

% with the Ensemble classifier, followed by the combination of the CSLBP and LGIP 

features (scenario 5) with 97.11 ± 0.86 % with the KNN classifier, and the classification 

average accuracy of feature extracted from CSLBP approach seemed to have the lowest 

recording (79.80 ± 6.85%). 
 

Table 3: The quantitative classification accuracies of various modeling approaches based on the 
Ensemble classifier. The bold values indicate the highest classification accuracy. 

Methods 
Extracted 

Features 

Per Class Accuracy (%) Overall 

Accuracy (%) Regular cells ALL affected 

CSLBP 16 91.15 ± 6.29 92.69 ± 3.13 91.92 ± 5.42 

GWT 48 94.61 ± 2.86 94.61 ± 2.49 94.61 ± 2.03 

LGIP 37 94.61 ± 2.13 95.76 ± 1.36 95.19 ± 2.75 

CSLBP + GWT 64 94.99 ± 3.07 97.30 ± 0.59 96.15 ± 2.86 

CSLBP + LGIP 53 95.76 ± 3.36 98.46 ± 0.98 97.11 ± 0.86 

GWT+ LGIP 85 96.15 ± 1.62 97.30 ± 1.16 96.73 ± 1.22 

CSLBP + GWT + LGIP 101 96.15 ± 2.56 98.84 ± 0.59 97.49 ± 1.02 

 

Table 4: The quantitative classification accuracies of various modeling approaches based on the 
KNN classifier. The bold values indicate the highest classification accuracy. 

Methods 
Extracted 

Features 

Per Class Accuracy (%) 
Overall 

Accuracy (%) Regular cells ALL affected 

CSLBP 16 92.69 ± 3.12 92.30 ± 3.14 92.49 ± 3.56 

GWT 48 94.23 ± 2.15 93.46 ± 3.29 93.84 ± 4.32 

LGIP 37 91.15 ± 5.14 80.00 ± 5.67 85.57 ± 3.42 

CSLBP + GWT 64 94.99 ± 2.59 93.84 ± 3.13 94.42 ± 2.11 

CSLBP + LGIP 53 94.23 ± 3.53 92.69 ± 4.60 93.46 ± 3.64 

GWT+ LGIP 85 94.23 ± 2.51 93.84 ± 2.86 94.03 ± 3.99 

CSLBP + GWT + LGIP 101 94.61 ± 3.13 95.38 ± 2.53 94.99 ± 2.74 
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Table 5: The quantitative classification accuracies of various modeling approaches based on 

the RF classifier. The bold values indicate the highest classification accuracy. 

Methods 
Extracted 

Features 

Per Class Accuracy (%) 
Overall 

Accuracy (%) Regular cells ALL affected 

CSLBP 16 93.84 ± 3.71 83.84 ± 8.26 88.84 ± 3.93 

GWT 48 91.15 ± 5.45 93.84 ± 3.71 92.49 ± 3.44 

LGIP 37 93.84 ± 2.79 86.15 ± 6.58 89.99 ± 4.13 

CSLBP + GWT 64 94.61 ± 2.86 88.84 ± 4.60 91.73 ± 3.39 

CSLBP + LGIP 53 94.99 ± 3.64 87.30 ± 4.45 91.15 ± 1.85 

GWT+ LGIP 85 94.99 ± 2.07 91.92 ± 3.57 93.46 ± 3.64 

CSLBP + GWT + LGIP 101 94.61 ± 3.71 94.99 ± 3.64 94.80 ± 2.40 

 

Considering on the empirical outcomes for all seven scenarios provided in Figure 6, 

it is quite obvious that the various combinations of features generated from CSLBP, 

GWT, and LGIP techniques have a beneficial influence on the overall effectiveness 

and dominate the other scenarios including all classifiers. The results exposed that 

the fusion of the CSLBP, GWT, and LGIP approaches reached the highest average 

accuracy of 97.49 ± 1.02 %, 94.99 ± 2.74 %, and 94.80 ± 2.40 % using Ensemble, 

KNN, and RF classifiers respectively. Furthermore, the fusion of GWT and LGIP 

(scenario 6) and the fusion of CSLBP and LGIP (scenario 5) approaches achieved the 

peak average accuracy of 93.07 ± 4.27 %, 94.99 ± 2.74 %, and 90.19 ± 4.48 % using 

DT and RF classifiers respectively. Accordingly, the combination of CSLBP, GWT, 

and LGIP approaches with the Ensemble classifier resulted in the highest overall 

accuracy performance of 97.49 ± 1.02 % among the other learners for all scenarios. 

 

 
Figure 6: Overall accuracies performance comparison of the presented scheme scenarios 

utilizing various classifiers. 

 

The same consequence was discovered when different performance metrics 

(precision, sensitivity, specificity, F1-score, and MCC) were performed to evaluate 

the suggested workflow. The outcomes presented that the fusion of the CSLBP, 

GWT, and LGIP approaches reached the maximum precision rate of 98.87 %, 95.44 

%, and 95.1 % performing the Ensemble, KNN, and RF classifiers respectively. 

Moreover, the features extracted from GWT (scenario 2) method recorded the highest 
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precision rate of 95.38 % using the DT classifier; however, the lowest precision rate 

of 78.03 % was generated utilizing CSLBP technique with the DT classifier. 

Consequently, including all scenarios, the experimental results confirmed a 

maximum precision score of 98.87 % with the Ensemble classifier among the other 

classifiers. Figure 7 summarizes the output of a comparative of the precision 

percentages of seven scenarios utilizing various classifiers. 

 
Figure 7: Precision performance comparison of the presented scheme scenarios utilizing various 

classifiers. 

 

Additionally, the combination of features from the CSLBP, GWT, and LGIP 

approaches similarly achieved the highest in terms of sensitivity percentage as 96.15 

% was attained using the Ensemble classifier (see Figure 8) followed by the fusion of 

the CSLBP and GWT with sensitivity rate of 93.97 ± 3.67 % with the KNN 

classifier. conversely, the lowest sensitivity percentage of 83.07 % has been verified 

when the GWT technique was employed with the NB classifier. Based on the 

investigational consequences for all five classifiers described in Figure 8, it can be 

confirmed that the value of sensitivity percentage of fused features was higher than 

other features with the Ensemble classifier. With regards to the specificity rates, the 

results shown in Figure 9 proved that the advantage of the features derived from the 

fusion of the CSLBP, GWT, and LGIP techniques (scenario 7) and it was It 

undoubtedly produced great scores that clearly outperformed the other scenarios. The 

optimum result was achieved utilizing the Ensemble classifier using the fusion of 

CSLBP, GWT, and LGIP features, which outperformed other classifiers with 

specificity percentages of 95.38 % and 95.00 % for the KNN and RF classifiers, 

respectively. The specificity percentage of the CSLBP approach utilizing the DT 

classifier, on the other hand, was the lowest (76.15 %). 
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Figure 8: Sensitivity performance comparison of the presented scheme scenarios utilizing 

various classifiers. 

 

 
Figure 9: Specificity performance comparison of the presented scheme scenarios utilizing 

various classifiers. 

 

In terms of F1-score percentages, the results presented in Table 10 prove the 

effectiveness of the CSLBP, GWT, and LGIP approaches when combined, and it 

clearly generated outstanding results that dominate its other scenarios. The 

combination of the CSLBP, GWT, and LGIP features with the Ensemble classifier 

yielded the greatest consequences (F1-score rate of 97.46 %), followed by F1-score 

percentage of 94.96% with the KNN classifier, and the classification F1-score 

proportion of feature extracted from the GWT and LGIP methods yielded the lowest 

scoring (76.48 %) with the NB classifier. The results regarding MCC rates were very 

satisfactory. According to the consequences in Figure 11, it was discovered that 

combining the CSLBP, GWT, and LGIP features together attained the maximum 

MCC of 95.08 % with the Ensemble classifier followed by 90.11% with the KNN 
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classifier, whereas the classification MCC of features derived from the CSLBP 

technique had the lowest scoring (60.12 %) with the DT classifier. 

 
Figure 10: performance comparison of the presented scheme scenarios utilizing various 

classifiers. 

 
Figure 11: MCC performance comparison of the presented scheme scenarios utilizing various 

classifiers. 

 

The experimentations from Figure 12 also noticeably reported that the features extracted 

by the combination of the CSLBP, GWT, and LGIP approaches surpassed alternative 

scenarios and scored the maximum performance using the Ensemble classifier with regard 

to other. Considering the recorded results, the highest precision, sensitivity, specificity, 

F1-score, and MCC consequences of the features derived utilizing combined the CSLBP, 

GWT, and LGIP approaches were 98.87 %, 96.15 %, 98.84 %, 97.46 %, and 95.08 % 

respectively, and was obtained using 101 effective features. Whereas, the lowest 

precision, sensitivity, specificity, F1-score, and MCC scores were realized using the 

CSLBP method (78.03 %) with the DT classifier, the GWT method (83.07 %) with the 

NB classifier, the CSLBP method (76.15 %) with the DT classifier, the GWT and LGIP 
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methods (76.48 %) with the DT classifier, and the CSLBP method (60.12 %) with the DT 

classifier respectively. 

 

 
Figure 12: System performance comparison for the various scenarios using Ensemble 

classifier. 

 

The effectiveness of the suggested scenarios was indeed evaluated in this study using the same 

database and computational situation through misclassification error rate measurement. The 

misclassification error rates for the developed models were evaluated, as shown in Figure 13. 

The results showed that integrating the CSLBP, GWT, and LGIP features with the Ensemble 

classifier leads in a minimal misclassification error of 2.51%, indicating that the recommended 

scenario performed considerably improved than other possible scenarios. As a result, this 

scenario was approved as a proposed technique for categorizing ALL-leukemia cells. 

 

 
 

Figure 13: Misclassification error rate comparison for various scenarios using Ensemble 

classifier. 

 

Finally, the recommended fusion system's performance was compared to several 

current framework techniques, as can be seen in Table 6. As compared with 

conventional approaches, the suggested system generates remarkable results, 

especially in terms of overall accuracy rate. This is owing to the integration of the 

CSLBP, GWT, and LGIP approaches, which resulted in attaining its strengths. 

Furthermore, the other studies used a large number of features, whereas the current 

proposal only 101 features and produced the optimum outcomes. 
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Table 6: The performance comparison literature for ALL-leukemia diagnostic techniques. 

Previous study 
ALL-IDB2 database Accuracy 

(%) Year Classifier 

Das et al. [31] 2020 GLRLM +SVM (RBF) 96.00 

S. Praveena et al. [32] 2020 GreyJOA +DCNN 93.50 

Mondal et al. [15] 2021 Xception 93.90 

Pradeep Kumar Das et al. [33] 2021 MobilenetV2 + ResNet18 97.18 

Proposed work 2022 CSLBP + GWT + LGIP +Ensemble  97.49 

 

The aforementioned extensive experiments indicate that the designed scheme can accurately 

discriminate normal cell instances from blasts in blood smear images, that might serve 

therapists make a clear conclusive decision on respective diagnostic experts' opinions and the 

developed instrument. 

 

5. CONCLUSION 

Early diagnosis of ALL in white blood cells is essential to reduce disease risk. The key 

objective of the proposed work is to perform ALL-leukemia cells classification utilizing raw 

blood smear images using feature fusion as well as a ML method. Each trained framework 

was validated utilizing standardized performance measures in seven various scenarios. The 

recommended architecture was validated employing images of microscopic thin blood smears 

from the ALL-IDB2 database. When compared to the ground truth obtained utilizing features 

extracted using individual feature extraction methodologies such as CSLBP, GWT, and LGIP, 

the presented feature fusion workflow seemed to have a superior overall classification 

accuracy of 97.49 ± 1.02%. Furthermore, the presented framework was proved to be more 

accurate than previous studies for the categorization of ALL-leukemia cells based on 

experimental outcomes. 
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