

Kurdistan Journal of Applied Research (KJAR)

Print-ISSN: 2411-7684 | Electronic-ISSN: 2411-7706

Website: Kjar.spu.edu.iq | Email: kjar@spu.edu.iq

Improving The Performance of Big

Data Databases

Nzar Abdulqadir Ali Dashne Raouf Arif
Computer Science Department Sulaimani Technical Institute

Cihan University Sulaimani Sulaimani Polytechnic University
Sulaimani, Iraq Sulaimani, Iraq
Nzar@mail.com Dashne.raouf@spu.edu.iq

Volume 4 – Issue 2
December 2019

DOI:
10.24017/science.2019
.2.20

Received:
04 November 2019

Accepted:
22 December 2019

Abstract
Real-time monitoring systems utilize two types of database, they
are: relational databases such as MySQL and non-relational
databases such as MongoDB. A relational database
management system (RDBMS) stores data in a structured
format using rows and columns. It is relational because the
values of the tables are connected. A non-relational database is
a database that does not adopt the relational structure given by
traditional. In recent years, this class of databases has also
been referred to as Not only SQL (NoSQL). This paper,
discusses many comparisons that have been conducted on the
execution time performance of types of database (SQL and
NoSQL). In SQL (Structured Query Language) databases
different algorithms are used for inserting and updating data,
such as indexing, bulk insert and multiple updating. However,
in NoSQL different algorithms are used for inserting and
updating operations such as default-indexing, batch insert,
multiple updating and pipeline aggregation. As a result, firstly
compared with related papers, this paper shows that the
performance of both SQL and NoSQL can improved. Secondly,
performance can be dramatically improved for inserting and
updating operations in the NoSQL database compared to the
SQL database. To demonstrate the performance of the different
algorithms for entering and updating data in SQL and NoSQL,
this paper focuses on a different number of data sets and
different performance results. The SQL part of the paper is
conducted on 50,000 records to 3,000,000 records, while the
NoSQL part of the paper is conducted on 50,000 to 16,000,000
documents (2GB) for NoSQL. In SQL, three million records
are inserted within 606.53 seconds, while in NoSQL this
number of documents is inserted within 67.87 seconds. For
updating data, in SQL 300,000 records are updated within
271.17 seconds, while for NoSQL this number of documents is
updated within just 46.02 seconds.

Keywords: Big data, Real-time, SQL, and NoSQL

mailto:Dashne.raouf@spu.edu.iq

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 207

1. INTRODUCTION

Big data is a term used to explain sets of data that are of several forms or structures, achieve
extremely high speeds and cannot be processed successfully by traditional database
management systems [1] [2]. Zhou et al [3], argued that by the end of 2015 the overall data
volume is going to surpass 7.9 Zettabytes(ZB) reaching 35ZB by 2020. Big data has five
features [4] [5] that are known as the “5Vs”: volume, velocity, variety, veracity and value as
shown in Figure (1) [6].

Figure 1: Big data 5 V [6].

1.Volume: Indicates large amounts of data used for various functions, for example, data for
mobile devices.
2.Velocity: Indicates the speed or frequency at which data is created, updated, processed, and
accessed.
3.Variety: Data collection through different device types such as videos, images, etc.
4.Value: Indicates the way in which massive data sets are used to draw useful knowledge.
Value is the most important feature of any large data tool as it allows useful information to be
generated
5.Veracity: Relates to the high accuracy of knowledge or informatics and value.
Two types of databases are used to store big data: relational databases such as MySQL and no
n-relational databases such as MongoDB are available.
The problem in this paper is a big data management while storage have become a global
challenge in recent years. In the past, relational databases were used to store and manage data;
increasing the amount of data generated a new type of database as NoSQL. On the other hand,
the SQL database does not stop exactly for sensitive data such as banking services. For this
reason, some researchers measured the test performance of each type of database and have
compared response time measurements.
The aim of this paper is to improve performance in the real-time monitoring system regarding
inserting and updating big data using different types of algorithms in both SQL and NoSQL
databases.
1.1. Relational Model (SQL)
The traditional database is the most well-known type of database and by far the most
commonly used. It was originally developed for the long-term storage of information [6]. The
entire data load is contained in tables of rows and columns in a relational database. Tables can
be seen as unified relational data bodies. Rows have unique data sets and are grouped by
column [7]. A unique index is required for each row or column in a table; through matching
data fields various tables are linked together. One of the most popular databases used for SQL
is MySQL[8] [9].
1.2. Non- relational databases (NoSQL)
Generally, the term “NoSQL” refers to database systems that do not comply with a strict
relational data model. Higher availability and scalability can be achieved using NoSQL
databases, which are important criteria for big data processing. NoSQL databases do not need
to be finalized at an early stage of database design with a fixed scheme of predefined data

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 208

structures and limitations [10] [11]. A non-relational database is a database that does not
contain the rows and columns used in most conventional database systems. Instead, non-
relational databases use a storage model that is optimized for the specific requirements of the
type of data being stored. For example, data may be stored as simple key/value pairs, as JSON
documents, or as a graph consisting of edges and vertices [12] [13].
There are four different categories of NoSQL that are classified by storage of information [14]
[15].
1. Key-value: Each item in the database is stored as a name (key) attribute along with a name
(value) attribute. The most common for this type are Riak and Voldemort.
2. Wide-column stores: Store data together as columns instead of rows. Cassandra and HBase
are the most common.
3. Document A document database is a kind of non-relational database designed to store and
search for information in JSON-like files. Document databases make it easier for developers
to store and request information in a database that is used in their application software.
MongoDB is the top database of this type.
4. Graph databases: Used to store network data such as social connections such as Neo4J.
One of the top databases used for NoSQL is MongoDB [16], MongoDB is a NoSQL system
and is a document-based database. The data is saved in BSON form, which is a binary
sequence encoding JSON documents. In MongoDB, a collection is comparable to a table and
a document is equal to a record in a relational record. MongoDB currently provides
official driver support for all popular programming languages like C, C++, C#, Java, Node,
Perl, PHP, Python [18] [17].
MongoDB uses some kinds of aggregation; for instance, the aggregation pipeline is a data
aggregation system based on the concept of data processing pipelines. Documents enter a
multi-stage pipeline that transforms the documents into aggregated results [19] [20].

2. LITERATURE WORKS

H. Ansari 2018 [9]. This paper conducted a comparison between MySQL and MongoDB on
two factors, performance and space allocation, with different data sizes. The results showed
that MongoDB was faster than MySQL at for every process in almost every test case, but
MySQL allocated less storage when it held large volumes of data. For instance, when
inserting 106 records in each database, the size of MongoDB was 270.42 Megabytes (MB)
while the size of MySQL was 175.28MB.
D. Merriman 2018 [24]. The paper was focused on pipeline aggregation. This framework can
be designed to optimize aggregate operations that include; data access, data retrieval, data
writes, indexing, aggregate multiple operations and/or commands. This aggregation operation
can be defined as a pipeline that provides the results of the first process to be forwarded to the
next process input. Computations can also be performed at each stage of the process, where
the calculation results of each stage aggregate until the final result is reached.
E. Andersson and Z. Berggren 2017 [8]. Illustrated comparison between MySQL and
MongoDB concerning different operations such as single and multi-insert. The paper
explained that MongoDB was faster in every operation; 106 records were inserted in MySQL
within 1020 seconds while the equivalent value for MongoDB was 105 seconds concerning a
single operation. For multi-operation, the same number of records were inserted in MySQL
within 50 seconds and were inserted in MongoDB within 28 seconds. Update query was
another comparison conducted in their paper using different data sizes; for example, updating
one element for 106 records took 2.5 seconds in MySQL and about 0.5 seconds in MongoDB.
D. Sink 2017 [21]. This paper compared sequence and random inserting and updating for
different popular types of databases such as MySQL, MongoDB and Rethink DB. The results
showed that MongoDB was faster than each type of NoSQL for sequence or random insert but
for an update operation, if random update was used then MySQL was faster than MongoDB
and MongoDB were faster than Rethink DB.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 209

V. Abramova et al 2014 [22]. Their paper compared between the distinguished popular types
of NoSQL: Cassandra, HBase, MongoDB, Orient DB and Redis. Reading and updating on
specific mechanisms and applications. The results of the comparison showed that Cassandra
and HBase were faster to update than MongoDB but slower to read. In every operation, the
Orient DB was the lowest performance and slower than MongoDB.
Z. Parker. et al 2013 [23]. This paper also conducted a comparison between SQL and NoSQL
and indicated that NoSQL was faster for inserts and updates in a simple query; nevertheless,
SQL had more speed when updating with complex querying or non-key attributes.

3. METHODS AND MATERIALS

The main focus of this paper is on testing performance on big data in real-time monitoring
system. This reminder of this paper develops in two main sections. The first section to SQL
attempts to increase performance by using multi-insert (bulk insert) instead of single insert.
When a bulk insert is inserted, multiple records in one operation are separated by commas. It
also tries to accelerate performance by finding and updating data using a multi-update
operation and indexing. The second section is related to NoSQL, the aim is to increase
performance using two stages: The first stage inserts data by using batch insert to insert multi
documents at a time; by default, MongoDB batch inserts 101 documents. The second stage
finds and updates documents using multi-update operation and pipeline aggregation.
3.1. The proposed database architecture
In this section, a design is formulated consisting all the steps needed to create the best
database system for big data in a monitoring system, shown in Figure (2).

Figure 2: System design of monitoring system in SQL and NoSQL.

3.2. Structured Query Language (SQL)
Structured Query Language is the typical way in which information is stored in a table. This
section discusses how to enhance the performance of the database to create, add and update
information.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 210

3.2.1. Database schema
To implement our algorithms for SQL we created a database for a real-time temperature
monitoring system, as shown in Figure (3). The first table is called Initial-table and the second
table is called Join-table.

Figure 3: Database table in this system.

To create and update the dataset in SQL, algorithms have to be created; from those algorithms
the following definition are made: “NR as number of records”, “Lon_R1 as minimum-value
longitude”, “Lon_R2 as maximum-value longitude”, “Lat_R1 as minimum-value latitude” ,
“Lat_R2 as maximum-value latitude”, “Temp_R1 as minimum-value temperature”,
“Temp_R2 maximum-value temperature”, “Hum_1 as minimum-value humidity”, and
“Hum_2 as maximum- value humidity”.
3.2.2 Inserting data
The “insert into” statement adds a new record to a table using the simulation method. Data
simulation means generating a random function between the range values. The value range for
all fields is by default between 0 and 1, but the random function can return an unexpected
value within the specified range. The value of each field is entered in to the table through bulk
insert or multi-run because a single data insertion process takes more time and reduces
performance. Figure (4) illustrates the algorithm for entering data into SQL using the
simulation method.

Figure 4: Algorithm to multi-insert data in SQL using the simulation algorithm.

3.2.3 SQL updating data
This section shows how performance was tested for changing the temperature to equal or
greater than 40 degrees in SQL using an updating query. Figure (5) illustrates the algorithm
for randomly updating data into SQL. The database for SQL includes Initial-table and Join-

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 211

table; the initial-table aims to store all the data, but the second table was created to store only
updating data and to insert data from the initial-table to second table randomly. For example,
if we want to update 103 records from 106 in the first table, we select 103records in the initial-
table (first table) in random order, inserting them in to the second table (join-table) and
creating a join between them depending on their ID field. The goal of the second table is
increase performance. In this case, less data scanned for updating.

Figure 5: Algorithm to update data in SQL using the random function.

3.3. Not only SQL Language (NoSQL)
NoSQL is a new generation of database management systems that differ primarily from
relational database management systems. These databases do not require column tables, avoid
joins and usually support horizontal scaling. MongoDB is used as a higher NoSQL database in
this paper. This section explains how to improve the performance of the database
3.3.1. Database collections
A collection in NoSQL is like a table in SQL; this section describes two collections. The name
of the first collection is initial-collection and the second is called join-collection, as shown in
Figure (6).

Figure 6: Database collection in this paper.

To create and update the dataset in NoSQL, algorithms have to be created; from those
algorithms the following definition are made: “NR as number of documents”, “Lon_R1 as
minimum-value longitude”, “Lon_R2 as maximum-value longitude”, “Lat_R1 as minimum-
value latitude” , “Lat_R2 as maximum-value latitude”, “Temp_R1 as minimum-value

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 212

temperature”, “Temp_R2 maximum-value temperature”, “Hum_1 as minimum-value
humidity”, and “Hum_2 as maximum- value humidity”.
3.3.2 Inserting data in NoSQL
MongoDB stores documents in collections. Inserting data in to MongoDB takes place via
single insert or multi-insert (batch insert) operations. In this paper, batch insert is used to
restrict data insertion.
Batch input is used to insert multiple documents in one iteration, by default 101 documents.
But as shown in this section, this number can be increased to 10,000 documents instead of 101
documents as shown in Figure (7), in this case we can increase the performance of the
inserting operation.

Figure 7: Algorithm code for multi-insert operation in NoSQL.

 3.3.3. Updating data in NoSQL
Regarding testing the performance of changing the temperature in NoSQL using an updating
query, there is a different way to update documents in a collection. When updating and finding
documents, MongoDB provides some aggregation operations. In this paper we use pipeline
aggregation with a join between collections. Documents are entered as inputs to a multi-stage
pipeline that converts documents into a combined result; this section, shows that a pipeline
can also be successfully created using a join between two collections without embedding and
duplicating the data; the stages of this operation are shown in Figure (8).

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 213

Figure 8: Pipeline aggregation stages in NoSQL with a join between two collections.

The database for NoSQL includes Initial-collection and Join- collection; the initial- collection
aims to store all the data, but the second collection was created to store only updating data and
to insert data from the initial-collection to the second collection randomly. For example, if we
want to update 103 documents from 106 in the first collection, we select 103 documents in the
initial- collection (first collection) in random order, inserting them in to the second collection
(join- collection) and creating a join between them depending on their key field. One of the
disadvantages of NoSQL is that it is not possible to join the data of two collections; instead, it
is only possible to data. However, in this paper, we solved this problem by creating a join
between data for their collections (initial- collection and join-collection). The goal of the
second table is to increase performance; in this case less data is scanned for updating.

4. RESULTS AND DISCUSSION

The results of the implementation algorithms described in section 3 will be presented and
discussed in this section. This section will test the performance and present a comparison of
different SQL and NoSQL operations. Identifying the test environment includes the hardware
and software configuration that will be used during the test:

• CPU: Intel Core i5-4300U CPU @1.90GHZ 2.10 GHz on a personal laptop.
• RAM: 8GB
• HDD: 256GB SSD
• OS: Windows 10 Professional 64Bit
• Software: Two difference software programs are used, MY-SQL and MongoDB.
• Test performance: Performance is tested by calculating the response time within the
process (start query and end query).

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 214

4.1. SQL performance
The results of the performance test are presented in this section with regard to inserting and
modifying data in SQL.
4.1.1. Inserting performance
To test the inserting data performance, multiple (bulk) insert for different data sets are used
and calculated in seconds. The first dataset starts with 50,000 records and the last one has
3000000 records as shown in Table (1).

Table 1: Performance test for multi (bulk) insert operation in SQL.
NO. Data set (Records) Response time to insert (Seconds)

1 50000 4.77

2 100000 8.72

3 150000 17.25

4 250000 25.54

5 500000 59.80

6 1000000 84.86

7 1500000 85.02

8 2000000 390.83

9 2500000 460.38

10 3000000 606.53

4.1.2. Updating performance
To test the updating data performance, index and multiple update are used. The first update
5,000 records from 50,000 records and the last one update 300,000 records from 3,000,000
records as shown in Table (2)

Table 2: Performance test for update query in SQL.

NO. Data set (Records) Records to updating Response time to update
(Seconds)

1 50,000 5,000 0.32

2 100,000 10,000 0.7

3 150,000 15,000 1.64

4 250,000 25,000 3.85

5 500,000 50,000 6.53

6 1,000,000 100,000 40.55

7 1,500,000 150,000 169.47

8 2,000,000 200,000 145.49

9 2,500,000 250,000 172.24

10 3,000,000 300,000 271.17

4.2. NoSQL performance
This section presents the test and comparison results for entering and updating NoSQL
documents using different algorithms.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 215

4.2.1. Inserting performance
To test the inserting data performance, multiple (batch) insert for different data sets are
utilized. The first dataset starts with 50,000 documents and the last one has 16,000,000
documents as shown in Table (3).

Table 3: Test performance to multi insert data in NoSQL
NO. Data set (Documents) Response time to insert documents (Seconds)

1 50000 1.61

2 100000 2.34

3 150000 4.10

4 250000 5.83

5 500000 11.46

6 1000000 23.26

7 1500000 34.50

8 2000000 46.02

9 2500000 57.14

10 3000000 67.87

11 16,000,000 357

4.2.2. Updating performance
To test the updating data performance, pipeline aggregation and join between collections are
used for different data sets. The first update 5,000 documents from 50,000 documents and the
last one update updated 300,000 documents from 3,000,000 documents as shown in Table (4).

Table 4: Updating query by pipeline aggregation operation.

NO. Data set (Documents) Documents to updating Update Documents
(Seconds)

1 50000 5,000 0.21

2 100000 10,000 0.42

3 150000 15,000 0.65

4 250000 25,000 1.09

5 500000 50,000 2.32

6 1000000 100,000 4.67

7 1500000 150,000 6.994

8 2000000 200,000 9.55

9 2500000 250,000 11.524

10 3000000 300,000 14.22

4.3. Comparison between SQL and NoSQL
Taking into considering all the results, we can determine the best way to increase performance
for entering and updating records (documents) for a large amount of data in both SQL and
NoSQL. In this section a comparison is made between SQL and NoSQL for 10 different data
sets from 50000 to 16,000,000 records. As shown in Table (5), NoSQL is more suitable for
inserting bigdata. For example, inserting 2*106 records in SQL took 390.83 seconds but
16*106 documents (2.2 GB) can be inserted in the same number of seconds in NoSQL.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 216

The other comparison between SQL and NoSQL concerns the updating of data; for instance,
in SQL 3*105 records can be updated from 3*106 records within 271.17 seconds, but for
NoSQL the equivalent time is only 14.22 seconds.

Table 5: Comparison of test results between SQL and NoSQL.

Data set

Insert
records
SQL(Sec)

Insert
documents
NoSQL (Sec)

Records to
update

Update
records
SQL (Sec)

Update
documents
NoSQL (Sec)

50000 4.77 1.61 5000 0.21 0.21

100000 8.72 2.34 10000 0.7 0.42

150000 17.25 4.10 15000 1.64 0.65

250000 25.54 5.83 25000 3.85 1.09

500000 59.80 11.46 50000 6.53 2.32

1000000 84.86 23.26 100000 40.55 4.67

1500000 85.02 34.50 150000 169.47 6.994

2000000 390.83 46.02 200000 145.49 9.55

2500000 460.38 57.14 250000 172.24 11.524

3000000 606.53 67.87 300000 271.17 14.22

4000,000 73.87 400,000 19.21

10,000,000 242 450,000 23.3

16,000,000 357 500,000 28.3

The results of each comparison show that NoSQL is best used to improve performance when
dealing with big data, as shown in Figure (9).

Figure 9: comparison of execution time results between SQL and NoSQL for inserting and updating

data.

4.4. Comparison between this paper and previous studies.
Studies have been conducted on the performance of relational (SQL) and non-relational
databases (NoSQL), each with different results. In this section, a comparison is presented
between the response times from this paper and one of the last studies conducted in 2017
which used the same dataset for their comparison as shown in Figure (10).

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 217

Figure 10: Dataset used by the DEVIN study for SQL and NoSQL comparison [21]

1. SQL comparison between DEVIN SINK in 2017[21] and this paper for inserting and

updating data. Table (6), Figure (11) and Figure (12) present the results of the SQL
comparison.

Table 6: Comaprsion of SQL response times between the DEVIN study and this paper for inserting data

N. record DEVIN study
Insert data

This paper
Insert data

DEVIN study
update data

This paer
update data

300,000 100 41 50 3

500,000 220 57 100 7

1000,000 500 120 250 19

Figure 11: Comaprsion of SQL response times between the DEVIN study and this paper for inserting.

Figure 12: Comaprsion of SQL response times between the DEVIN study and this paper for updating.

2. NoSQL comparison between DEVIN SINK in 2017[21] and this paper for inserting and

updating data. Table (7), Figure (13) and Figure (14) present the results of NoSQL
comparison.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 218

Table 7: Comaprsion of SQL response times between the DEVIN study and this paper for inserting

N. record DEVIN study
Insert data

This
paper
Insert
data

DEVIN study
update data

This paper
update data

300,000 100 4 100 1

500,000 300 8 250 1.7

1000,000 500 17 1100 4

Figure 13: Comaprsion of NoSQL response times between the DEVIN study and this paper for

inserting.

Figure 14: Comaprsion of NoSQL response times between the DEVIN study and this paper for updating

All of the above charts show that the various methods and algorithms used in this paper can
improve performance compared to one of the most recent studies conducted with the same
data set.

5. CONCLUSION

Big data is a term which is used to describe a massive volume of both structured and
unstructured data. A real-time temperature monitoring system is one of the applications of big
data; it enables the processing and measurement of massive volumes of temperature data.
In this paper, some different algorithms have been proposed to increase SQL and NoSQL
database performance and the results have been compared with the most recent study in this
filed.
The algorithms related to SQL database contains indexing such as a primary index for
improving bulk insertion and multiple update operations at the same time.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 219

The algorithms related to NoSQL databases, also contain indexing, batch insert (multiple
insert), pipeline aggregation. Batch insert is used to insert multiple documents (by default 101
documents in one iteration), but in this paper this number can be increased to 10000
documents in one iteration, and pipeline aggregation can be used between two collections and
a join can be created for matching between them without the duplication of data.
After improving performance in SQL and NoSQL, a comparison between these two databases
was conducted for inserting and updating operations in all the datasets from 50,000 records to
3,000,000 records for SQL, and from 50,000 documents to 16,000,000 documents (2GB) in
NoSQL. The results showed that NoSQL is much faster than SQL.

6. SUGGESTIONS FOR FUTURE WORKS

There are various possible suggestions for how far this paper can be extended, and the work
can be scheduled as follows:
1.Using geospatial indexes for latitude and longitude coordinate instead of one-dimensional
indexing.
3.Using sensor systems for collecting big data instead of simulation method.
4.Creating an online monitoring system. Online monitoring consists of more than just
vibration sensors. Online monitoring systems can be wired, or wireless. With recent advances
in battery and wireless transmission technology wireless online monitoring of machines and
condition has become easier, less costly, and technologically advanced as compared to
traditional solutions
5. Increasing Horizontal and vertical scaling. Horizontal scaling involves adding more
machines whereas vertical scaling involves adding more power (CPU, RAM) to an existing
machine.

REFERENCE
[1] Y. Arora and D. Goyal, "Big data: A review of analytics methods & techniques," in 2016 2nd International

Conference on Contemporary Computing and Informatics (IC3I), 2016, pp. 225-230.
[2] C. Luo, "Survey of Parallel Processing on Big Data," 2017.
[3] V. Rubin and T. Lukoianova, "Veracity roadmap: Is big data objective, truthful and credible?," Advances

in Classification Research Online, vol. 24, p. 4, 2013.
[4] G. Bello-Orgaz, J. J. Jung, and D. Camacho, "Social big data: Recent achievements and new challenges,"

Information Fusion, vol. 28, pp. 45-59, 2016.
[5] K. Al-Barznji and A. Atanassov, "A survey of Big Data Mining: challenges and techniques," in

Proceedings of 24th International Symposium" Control of Energy, Industrial and Ecological Systems,
Bankia, Bulgaria, 2016.

[6] H. K. Omar and A. K. Jumaa, "Big Data Analysis Using Apache Spark MLlib and Hadoop HDFS with
Scala and Java," Kurdistan Journal of Applied Research, vol. 4, pp. 7-14, 2019.

[7] O. Kushanova, "Building, Testing and Evaluating Database Clusters: OSA project," 2014.
[8] E. Andersson and Z. Berggren, "A Comparison Between MongoDB and MySQL Document Store

Considering Performance," ed, 2017.
[9] H. Ansari, "Performance Comparison of Two Database Management Systems MySQL vs MongoDB," ed,

2018.
[10] Y.-S. Kang, I.-H. Park, J. Rhee, and Y.-H. Lee, "MongoDB-based repository design for IoT-generated

RFID/sensor big data," IEEE Sensors Journal, vol. 16, pp. 485-497, 2015.
[11] S. S. Nyati, S. Pawar, and R. Ingle, "Performance evaluation of unstructured NoSQL data over distributed

framework," in 2013 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), 2013, pp. 1623-1627.

[12] K. Fraczek and M. Plechawska-Wojcik, "Comparative analysis of relational and non-relational databases
in the context of performance in web applications," in International Conference: Beyond Databases,
Architectures and Structures, 2017, pp. 153-164.

[13] S. Agrawal and A. Patel, "AStudy ON GRAPH STORAGE DATABASE OF NOSQL," International
Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), vol. 5, pp. 33-39, 2016.

[14] S. Venkatraman, K. Fahd, S. Kaspi, and R. Venkatraman, "SQL versus NoSQL movement with big data
analytics," Int. J. Inform. Technol. Comput. Sci, vol. 8, pp. 59-66, 2016.

[15] S. H. Aboutorabi, M. Rezapour, M. Moradi, and N. Ghadiri, "Performance evaluation of SQL and
MongoDB databases for big e-commerce data," in 2015 International Symposium on Computer Science
and Software Engineering (CSSE), pp. 1-7, 2015.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 220

[16] P. Kookarinrat and Y. Temtanapat, "Analysis of range-based key properties for sharded cluster of
mongodb," in 2015 2nd International Conference on Information Science and Security (ICISS), pp. 1-4,
2015.

[17] S. Ahmed, "A RESTFUL API WITH MONGODB," California State University, Sacramento, 2018.
[18] D. P. Seaman, J. J. Chaves, and K. S. Bugbee, "Benchmarking Big Data Cloud-Based Infrastructures,"

2017.
[19] C. Győrödi, R. Győrödi, G. Pecherle, and A. Olah, "A comparative study: MongoDB vs. MySQL," in

2015 13th International Conference on Engineering of Modern Electric Systems (EMES), 2015, pp. 1-6.
[20] J. Ajdari and B. Kasami, "MapReduce Performance in MongoDB Sharded Collections," International

Journal Of Advanced Computer Science And Applications, vol. 9, pp. 115-120, 2018.
[21] D. Sink, "A Real-time Database System for Managing Aquarium Data," Appalachian State University,

2017.
[22] V. Abramova, J. Bernardino, and P. Furtado, "Which nosql database? a performance overview," Open

Journal of Databases (OJDB), vol. 1, pp. 17-24, 2014.
[23] Z. Parker, S. Poe, and S. V. Vrbsky, "Comparing nosql mongodb to an sql db," in Proceedings of the 51st

ACM Southeast Conference, p. 5, 2013.
[24] D. Merriman, E. Horowitz, and C. T. Westin, "Aggregation framework system architecture and method,"

ed: Google Patents, 2018.

