

Kurdistan Journal of Applied Research (KJAR)

Print-ISSN: 2411-7684 | Electronic-ISSN: 2411-7706

Website: Kjar.spu.edu.iq| Email: kjar@spu.edu.iq

An improved Fully Homomorphic

Encryption model based on N-

Primes

Mohammed Anwar Mohammed Fadhil Salman Abed

Computer Science Department Department of Information Technology

College of Science Kalar Technical Institute

University of Sulaimani Sulaimani Polytechnic University

Sulaimani, Iraq Khanaqeen, Iraq

mohammed.anwar@univsul.edu.iq fadhil.abed@spu.edu.iq

Volume 4 - Issue 2

December 2019

DOI:

10.24017/science.2019.2.4

Received:

 03 August 2019

Accepted:

01 October 2019

Abstract

Cloud computing is the provision of computing services

over the internet, which provides unlimited computing

capabilities to its users. Cloud Service Providers (CSP) in

the distanced places helps the users such as businesses and

individuals to use its software and hardware means. The

physical distance between the users and providers allows

third parties to be capable of accessing the data which

threats the privacy of the users. Thus, its security is the

main concern when it comes to transform data from a

locally owned storage to cloud storage. Cloud providers

are required to save an encrypted version of user’s data on

their storage. The traditional encryption schemes have

been used for data encryption prior to sending them to the

provider. Thought, the secret key has to be provided by the

users to the server so as to decrypt the information prior to

the requirement of calculations. Therefore, the traditional

cryptographic schemes cannot be used to process cloud’s

data. After the encryption of the information data are

revealed to calculation in clouds, so confidentiality is not

guaranteed and this result in difficulty in using cloud. In

Homomorphic Encryptions calculation on ciphertext can

be performed with no need for decryption. This paper,

develops and designs a new mathematical model to achieve

the characteristics of the Fully Homomorphic Encryption.

The proposed model’s security depends on the problem of

Factorization the integers to their primary numbers. In

this paper, instead of dealing with two prime numbers it is

expanded to deal with n prime numbers. The security of

the presumptive algorithm to be more efficient in front of

the security challenges facing cloud computing. What

distinguishes this proposed system is that it deals with the

mailto:mohammed.anwar@univsul.edu.iq

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 41

explicit text after converting it to the ASCII code instead of

converting it to the binary system as it is in the existing

systems, thus providing speed in the encryption process

and returns the encryption.

Keywords: Storage protection, Cloud Computing Security,

Cloud Storage, Fully Homomorphic Encryption, Privacy

Protection

1. INTRODUCTION

Nowadays cloud computing plays an important role due to the fast progress of computer

networks and big data, it enables individuals and enterprises to access services for instance

storage or application on request [1]. It provides flexible remote storage and computing

capabilities to its users. Nonetheless, saving private data on third parties storage is the main

concern of cloud users, as they do not have full control over their data. Therefore, cloud

computing is not fully trustable [2]. It is required from CSPs to store an encrypted version of

user’s data. Nevertheless, the traditional encryption technique requires encrypted data on the

cloud to be decrypted before performing any operation on it. This still threaten the privacy of

stored data. To overcome this concern, Homomorphic Encryption (HE) was introduced. HE

allows performing calculations directly on ciphertext data without decrypting it. Additionally,

operations on encrypted data results the same as it is performed on its corresponding plain text

operation. Also, It is categorized into either Partial or Full, as Partially (PHE) supports either

addition or multiplication operation, while, Fully (FHE) supports random number of both

operations [3].Furthermore, interim of third party computation (FHE) appears to be more

secure and efficient than (PHE), since it gets advantage of properties of both operations [4].

The rest of the paper is structured as follows; subsection 1.1 explains the motivation behind

the work. In section 2 a brief on related study to the proposed work will be introduced. Then,

section 3 provides the methods and materials used as the idea of (HE) and the details of the

proposed algorithm. Additionally, section 4 presents a detailed explanation of the results and

experiments gained from the work.Discussions of the proposed work its performance and

comparing it to other existing techniques will be introduced in section 5. Lately, the

conclusion of the current work and recommendation for future work is located in section 6.

1.1. Reason of the study

Nowadays, the demands of accessing private information whenever needed have increased

rapidly. Enterprises and individuals are aiming at saving their private information on cloud

storage. Nevertheless, migrating private information from a locally owned storage to a third

party storage arises the challenge of addressing of extra amount of risks, such as maintaining

confidentiality, integrity, authentication, data security and privacy. For example, the cyber-

attacks on PlayStation network in 2011 leads to the breach of millions of user accounts leaking

passwords, credit card information, physical addresses and other personal information. After

the attacks, Sony announced that they could have taken special protection by encrypting the

data on their network [5].Thus; it is required from CSPs to save an encrypted version of user’s

data on their storage. Several techniques can be used to perform encryption on user’s data.

Conversely, as the data resides on the cloud storage it required to be decrypted before

performing any operation on the data. This might cause privacy and confidentiality issues to

the stored data. In Homomorphic Encryption computations can be performed on encrypted

data with no need to decryptit and the results of the computations are same as they were

processed on the corresponding plaintext data. Therefore, HE solves the issue of privacy

protection and confidentiality of cloud data.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 42

2. RELATED LITERATURE

At first the idea of homomorphic encryption was suggested by [6] which was

partially homomorphic encryption. Then multiplicative homomorphism introduced

by RSA [7]. Subsequently, [8] [9] [10] [11] were presented a partially homomorphic

encryption scheme. Afterward, [12] suggested a (FHE) scheme that performs

calculation of any number of multiplication and addition. However, the suggested

scheme was based on somewhat homomorphic encryption which increases the length

and cipher-text’s noise. Consequently, in [13] a (FHE) scheme has been introduced

in which the scheme uses elementary modular arithmetic and converts SWHE to

FHE by using Gentry’s technique. Then, the authors of [14] announced an improved

version of Smart-Vercauterenencryption scheme; the scheme decreased the

ciphertext and keys lengths. In 2013 IBM released a software package named HElib

which based on the use of Smart-Vercauterentechniques [15]. Moreover, in [16] the

authors have depended on the hardness of large integer factorization to introduce a

new homomorphic encryption scheme.The authors also show that how size of the

key and time of computations reduced enough for practical deployment. Afterward,

homomorphic encryption has been worked on by several authors and also examined

it on cloud computing system. Furthermore, a study on different homomorphic

encryption cryptosystems has been done by [17] the authors examined El-Gamal,

Paillier, RSA and Gentry on a cloud computing environment. In [18] a new

mechanism based on algebraic homomorphic encryption was introduced, this

mechanism was aimed at better security and was based on Fermat’s Little Theorem.

Additionally, the authors of [19] proposed Gentry’s encryption in parallel processing

and were tested on a private cloud. Also, in [20] simplified and structured wide

definitions in the homomorphic encryption discipline has been introduced, and raised

the question of using homomorphic encryption as a solution to their problem.

3. METHODS AND MATERIALS

3.1. The idea of Homomorphic Encryption (HE)

This section introduces the basics of (HE) and its different categories. It is categorized into

three different types as Fully Homomorphic Encryption (FHE), Somewhat Homomorphic

Encryption and Partially Homomorphic Encryption (PHE).An encryption scheme is called

homomorphic over the operation ’*’ if it supports the following equation [21]:

MmmmmEmEmE  112121 ,),()()((1)

(PHE) allows any number of either addition or multiplication. Examples of PHE are El-Gamal,

RSA, Goldwasser-Micali, Paillier and Benaloh. Whereas, in (SWHE) some types of operations

with limited number of times are allowed, such as, PollyCracker introduced by [22] and BNG

introduced by [23]. In (FHE) unlimited number of both addition and multiplication can be

performed, examples of FHE are FHE schemes Over Integers [24], NTRU-like FHE schemes

[25], Ideal Lattice-based FHE schemes [26], LWE-based FHE schemes [27], Gen10 [28] and

Simple FHE scheme [29].

3.2. The proposed algorithm

The proposed algorithm converts each plaintext character into ASII code and passes it to the

encryption algorithm nlrmct  where ct is the ciphertext, m is the plaintext

message and]1,0[ Lm , r is the noise added to the ciphertext, l is a prime big integer and

ipppn ...21  is the multiplication of numerous prime numbers resulting in one

ciphertext for each character in the plaintext.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 43

Step 1: Key generation

Generate nZl

Generate l , where l is a big prime integer value

Generate n , where n is a multiplication of various prime numbers

Step 2: Encryption algorithm

nlrmct  (2)

Where]1,0[ Lm and ipppn ...21 

Step 3: Decryption algorithm

lctm mod (3)

Step 4: Proof of additive homomorphism

)()()()(21212211213 rrnlmmnlrmnlrmctctm 

213 mmm  Since 0mod)(21  lrrnl then 213 mmm 

Step 4: Proof of multiplicative homomorphism

)()(2211213 nlrmnlrmctctm 

)}])((){(}[{ 211221213 nlrnlrnlrmnlrmmmm 

][22

212121213 nlrrmnlrnlrmmmm 

}]{[2

212121213 nlrrmnrnrlmmmm  But

0mod]{[2

21212  lnlrrmnrnrl , since (multiple of 0mod ll)

then 213 mmm 

4. RESULTS

The proposed algorithm has been tested on a simulation using Java programming language and

on a computer with Windows 10 64-bit operating system, Intel Core i7 processor and 16GB

RAM. The following experiments demonstrate the generation of the secret key and its

corresponding values, and to show how these values are used for encryption and decryption

algorithm.

4.1. Experiment 1

Choose a prime number 524287l , random numbers 6875291 r , 2496852 r ,

695791017323 n and two messages 561 m and 662 m . Then calculate the

ciphertexts
1ct and

2ct .

802758225080621456957952428768752965111  nlrmct

22057191083502936957952428724968566222  nlrmct

Proof of additive

124815334188971752205719108350293 80275822508062145213  ctctct

131 524287 mod 12481533418897175mod33  lctm

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 44

31166 56213  mmm

Proof of multiplicative

32+32e740012778911379671462284430858

2205719108350293 80275822508062145213



 ctctct

4290 524287 mod 32+32e740012778911379671462284430858mod33  lctm

429066 56213  mmm

4.2. Experiment 2

In experiment 2 the proposed algorithm has been tested on a plaintext file that contains a

message “Use new techniques of encryption for CSP in 2019.” Choose a prime number

6700417l , random number 345957466r , 116653715331 n then the

encrypted file will contain:

270408569943805901351 270408569943805901381 270408569943805901367

270408569943805901298 270408569943805901376 270408569943805901367

270408569943805901385 270408569943805901298 270408569943805901382

270408569943805901367 270408569943805901365 270408569943805901370

270408569943805901376 270408569943805901371 270408569943805901379

270408569943805901383 270408569943805901367 270408569943805901381

270408569943805901298 270408569943805901377 270408569943805901368

270408569943805901298 270408569943805901367 270408569943805901376

270408569943805901365 270408569943805901380 270408569943805901387

270408569943805901378 270408569943805901382 270408569943805901371

270408569943805901377 270408569943805901376 270408569943805901298

270408569943805901368 270408569943805901377 270408569943805901380

270408569943805901298 270408569943805901333 270408569943805901349

270408569943805901346 270408569943805901298 270408569943805901371

270408569943805901376 270408569943805901298 270408569943805901316

270408569943805901314 270408569943805901315 270408569943805901323

270408569943805901312

4.3. Experiment 3

In experiment 3 the proposed algorithm has been tested on a plaintext file that contains a

message “Test your algorithm on any character and number: $#123” Choose a prime number

6700417l , random number 345957466r , 116653715331 n then the

encrypted file will contain:

270408569943805901350 270408569943805901367 270408569943805901381

270408569943805901382 270408569943805901298 270408569943805901387

270408569943805901377 270408569943805901383 270408569943805901380

270408569943805901298 270408569943805901363 270408569943805901374

270408569943805901369 270408569943805901377 270408569943805901380

270408569943805901371 270408569943805901382 270408569943805901370

270408569943805901375 270408569943805901298 270408569943805901377

270408569943805901376 270408569943805901298 270408569943805901363

270408569943805901376 270408569943805901387 270408569943805901298

270408569943805901365 270408569943805901370 270408569943805901363

270408569943805901380 270408569943805901363 270408569943805901365

270408569943805901382 270408569943805901367 270408569943805901380

270408569943805901298 270408569943805901363 270408569943805901376

270408569943805901366 270408569943805901298 270408569943805901376

270408569943805901383 270408569943805901375 270408569943805901364

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 45

270408569943805901367 270408569943805901380 270408569943805901324

270408569943805901298 270408569943805901302 270408569943805901301

270408569943805901315 270408569943805901316 270408569943805901317

4.4. Experiment4

This time the proposed algorithm has been tested on a 911 Bytes file size, which was

encrypted in 0.010 MS and decrypted in 0.025 MS.Also in this experiments small numbers

were chosen as follows; choose a smallprime number 3l , a random number 5r ,

03532 n then the encrypted file will contain:

533 567 565 562 551 560 550 555 565 545 551 482 565 551 550 482 565 551 559

562 551 564 482 552 551 558 555 565 496 482 519 566 555 547 559 482 559 547

566 586 555 565 482 559 547 553 560 547 482 559 555 494 482 565 567 565 549

555 562 555 566 482 567 558 528 547 559 549 561 564 562 551 564 482 566 551

558 568 567 565 482 551 567 555 565 559 561 550 482 565 551 550 496 482 515

551 560 551 547 560 482 549 561 560 553 567 551 482 565 549 551 558 551 564

555 565 563 567 551 482 558 555 553 567 558 547 482 555 550 482 565 561 550

547 558 551 565 496 482 517 558 547 565 595 482 547 562 566 551 560 566 482

566 547 549 555 566 555 482 565 561 549 555 561 565 563 567 482 547 550 482

558 555 566 561 564 547 482 566 561 564 563 567 551 560 566 482 562 551 564

482 549 561 560 567 548 555 547 482 560 561 565 566 564 547 494 482 562 551

564 482 555 560 549 551 562 566 561 565 482 554 555 559 551 560 547 551 561

565 496 482 528 567 560 549 482 565 551 559 482 558 551 549 566 567 565 494

482 553 564 547 568 555 550 547 482 547 549 482 550 567 555 482 560 561 560

494 482 562 554 547 564 551 566 564 547 482 562 561 565 567 551 564 551 482

558 551 561 496 482 527 547 551 549 551 560 547 565 482 558 547 549 567 565

482 558 555 548 551 564 561 494 482 552 547 549 555 558 555 565 555 565 482

551 566 482 551 558 555 566 482 568 555 566 547 551 494 482 549 561 559 519

561 550 561 482 552 547 549 555 558 555 565 555 565 482 565 551 559 496 482

536 555 568 547 559 567 565 482 555 550 482 560 555 565 558 482 560 567 558

528 547 496 482 523 560 566 551 553 551 564 482 547 566 482 559 547 570 555

559 567 565 482 550 567 555 496 482 535 566 482 547 482 566 555 560 549 555

550 567 560 566 482 558 561 564 551 559 496 482 536 555 568 547 559 567 565

482 568 555 566 547 551 482 558 555 553 567 558 547 482 568 551 558 482 558

547 549 567 565 482 549 567 564 565 567 565 482 549 561 560 550 555 559 551

560 566 567 559 496 482 530 554 547 565 551 558 578 567 565 482 563 567 555

565 482 559 547 567 564 555 565 482 558 561 548 561 564 566 555 565 494 482

552 555 560 555 548 567 565 482 558 561 564 551 559 482 555 560 494 482 568

567 558 562 567 566 547 566 551 482 551 570 496 482 526 561 564 551 559 482

555 562 565 567 559 482 550 561 558 561 564 482 565 555 566 482 547 559 551

566 494 482 549 561 560 565 551 549 566 551 566 567 564 482 547 550 555 562

555 565 549 555 560 553 482 551 558 555 566 496 482 533 551 550 482 552 547

567 549 555 548 567 565 482 547 558 555 563 567 547 559 482 559 551 566 567

565 494 482 563 567 555 565 482 568 547 564 555 567 565 482 551 558 555 566

482 562 561 564 566 466 555 566 561 564 482 555 550 496 482 536 555 568 547

559 567 565 482 550 555 553 560 455 565 531 585 559 482 565 561 558 458 555

549 555 566 567 550 555 560 482 565 549 551 558 551 564 555 565 563 567 551

496 482 527 561 564 548 555 482 566 555 560 549 555 550 567 560 566 494 482

550 561 558 561 564 482 563 567 555 565 482 568 551 554 555 549 567 558 547

482 549 561 560 565 551 563 567 547 566 494 482 550 567 555 482 550 555 547

559 482 549 561 560 550 555 559 551 560 566 567 559 482 560 567 560 549 494

482 568 555 566 547 551 482 565 549 551 558 551 564 555 565 563 567 551 482

561 550 555 561 482 558 555 548 551 564 561 482 560 551 549 482 558 555 553

567 558 547 496 482 536 551 565 566 555 548 567 558 567 559 482 547 560 566

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 46

551 482 555 562 565 567 559 482 562 564 555 559 555 565 482 555 560 482 552

547 567 549 555 548 567 565 482 561 564 549 555 482 558 567 549 566 567 565

482 551 566 482 567 558 566 564

5. DISCUSSION

The proposed algorithm has been tested on different file sizes and it indicates that the

proposed algorithm has better performance for encrypting different file sizes including large

files. The below figures 1, 2 and table 1 illustrates the encryption and decryption time

measured in millisecond.

Figure 1: Encryption time measured in millisecond

Figure 2:Decryption time measured in millisecond

Table 1: Testing the proposed algorithm on different file sizes

File size Encryption (MS) Decryption (MS)

10 KB 48 78

20 KB 62 14

50 KB 109 203

100 KB 156 266

200 KB 219 321

500 KB 422 703

1000 KB 750 1234

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 47

2 MB 1375 2249

4 MB 2386 4356

8 MB 4566 6592

12 MB 5686 8217

16 MB 7654 11919

24 MB 9716 15166

47 MB 19136 29466

93 MB 33836 58065

371 MB 158806 270695

5.1. The proposed algorithm vs. DGHV and SDC schemes

The proposed algorithm has been tested and compared to both DGHV and SDC schemes in

terms of performance and the results shows that it has better performance than the other

mentioned schemes, the below table 2 and figure 3 illustrates the comparison on different

lengths of messages.

Table 2: Comparing the proposed algorithm with DGHV and SDC measured in second

Message

length

Proposed

Algorithm
DGHV SDC

12 bytes 0.003 1.1 1.13

1800

bytes

0.02 113.071 117.2057

2400

bytes

0.35 560.4037 331.4788

Figure 3: Execution times measured in second

In term of security we have used n as multiple of i-Prime Modular Operation which provides

the security over the networks. In which we endeavored to get the quality that makes the

cryptography easier to have a good use of i- prime numbers. Additionally, the proposed

system provides easier selection of prime numbers and computationally difficult to solve by

intruders.However,the DGHV and SDC schemes are using only two large prime numbers.

Furthermore, this paper uses the equation of nlrmct  and it deals with massage by

converting each character of plaintext into its corresponding ASCII value , where message

]1,0[ Lm ,while, SDC Scheme handles the message after converting it to binary system

and themessage]1,0[m this increases the time it takes to encrypt a message, however,

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 48

selecting n a secret key in the proposed scheme gives the robust in the security than choosing

any number. The reason for this belongs to that the i-prime numbers itself cost to the third

party where, s/he must verify first if that the number is prime and then experiment it on the

encryption equation. This requires further attempts to break the code; in addition, the prime

numbers gives one probability of the solution. The non-prime numbers does not give all

probabilities of the solution and it may give more than number of same solution.

5.2. Research limitations

This section explains the limitation of the proposed study. Ciphertext file size is one of the

main points that should be tackled in the further works; as the size of the encrypted file is

larger than its equivalent plaintext file. Therefore, the decryption process always takes further

time than encryption process. The experiments are tested on private cloud and it is

recommended to test them on another type of cloud server.

4. CONCLUSION

In this paper we have proposed a FHE algorithm to protect cloud data; this is by saving an

encrypted version of user’s data. The proposed algorithm works by converting each character

of plaintext into corresponding ASCII value, then pass it to the encryption algorithm. The

proposed model’s security depends on the problem of factorization the integers to their

primary numbers, and it deals with n prime numbers of the security of the presumptive

algorithm, which make the proposed algorithm more efficient in facing of the challenge of

cloud computing security. The proposed algorithm has been compared to other existing

algorithms such as DGHV and SDC, and the results show thatit performs better in term of

security and performance, which also works on encrypting large file sizes.Nevertheless, it is

recommended as future work to focus on the decreasing the size of the decrypted file

(ciphertext file), as it is larger than its corresponding plaintext file. Therefore, it requires more

time to decrypting the ciphertext file than encrypting its corresponding plaintext file.

REFERENCE

[1] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani and S. U. Khan, “The rise of ‘big data’ on cloud

computing: review and open research issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[2] D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods, “Cloud-Trust-a Security Assessment

Model for Infrastructure as a Service (IaaS) Clouds,” IEEE Transactions on Cloud Computing, vol. 5, no. 3,
pp. 523–536, 2017.

[3] T. Shen, F. Wang, K. Chen, K. Wang and B. Li, “Efficient Leveled (Multi) Identity-Based Fully

Homomorphic Encryption Schemes,” IEEE Access, vol. 7, pp. 79299-79310, 2019.doi:
10.1109/ACCESS.2019.2922685

[4] B. VankudothandD. Vasumathi, “Homomorphic Encryption Techniques for securing Data in Cloud

Computing: A Survey,” International Journal of Computer Applications,Vol. 160. pp. 1-5, 2017.
doi:10.5120/ijca2017913063.

[5] K. Sangani, “Sony securitylaidbare,” in Engineering&Technology, vol. 6, no. 8, pp. 74-77, 2011.

doi:10.1049/et.2011.0810
[6] R. L. Rivest, L. Adleman and M. L. Dertouzos,“On data banks and privacyhomomorphisms”, Foundations of

securecomputation, vol. 4, no. 11, pp. 169-180, 1978.

[7] R. L. Rivest, A. Shamir and L.Adleman,“A method for obtaining digital signatures and public-key
cryptosystems.” Communications of the ACM, vol. 21, no. 2,pp. 120-126, 1978.

[8] A. C. Yao,“Protocols for secure computations (extended abstract),” InIEEE 23rd Annual Symposium on

Foundations of Computer Science (FOCS'82), pp. 160-164, 1982.
[9] G. Shafi and S.Micali,“Probabilistic encryption,” Journal of computer and system sciences, vol. 28, no. 2, pp.

270-299, 1984.

[10] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, Advances in
cryptology. Springer Berlin Heidelberg, 1985.

[11] P. Paillier,“Public-key cryptosystems based on composite degree residuosity classes,”International Conference

on the Theory and Applications of Cryptographic Techniques,pp. 223-238, 1999.

[12] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of the 41st ACM Symposium on

Theory of Computing STOC’2009, pp. 169–178, 2009,

[13] M. Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, “Fully homomorphic encryption over the integers,” in
Proc. EUROCRYPT’2010, pp. 24–43, 2010.

Kurdistan Journal of Applied Research | Volume 4 – Issue 2 – December 2019 | 49

[14] N. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small key and cipher sizes,” in

Proc. Public Key Cryptography PKC’2010, pp. 420–443, 2010.
[15] J. H. Cheon, H. Choe, D. Lee and Y. Son, “Faster Linear Transformations in HElib , Revisited,” IEEE Access,

vol. 7, pp. 50595-50604, 2019. doi: 10.1109/ACCESS.2019.2911300

[16] L. Xiao, O. Bastani and I-L. Yen, “An efficient homomorphic encryption protocol for multi-user
systems.”IACR Cryptology ePrint Archive, 2012.

[17] M. TEBAA and S. E. HAJII,”Secure Cloud Computing through Homomorphic Encryption”, International

Journal of Advancements in Computing Technology(IJACT), vol. 5, no. 16, 2013.
[18] R.Alattas, K.Elleithy, ”Cloud Computing Algebra Homomorphic Encryption Scheme Based on Fermat’s Little

Theorem”, In The American Society of Engineering Education, ASEE, 2016.

[19] R. Hayward andC.Chiangb, ”Parallelizing fully homomorphic encryption for a cloud environment”, Journal of
Applied Research and Technology, vol. 13, pp. 245-252, 2015.

[20] F.Armknechtet. al., ”A Guide to Fully Homomorphic Encryption”, IACR Cryptology ePrint Archive, 2015.

[21] A. Acar, H. Aksu, A. S. Uluagac and M. Conti. “A Survey on Homomorphic Encryption Schemes,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–35, 2018. doi:10.1145/3214303

[22] M. Fellows and N. Koblitz,“Combinatorial cryptosystems galore!,”2nd International conference, Finite fields:

theory, applications, and algorithms, pp. 51-62, 1993.
[23] D.Boneh, E.Goh, and K.Nissim,“Evaluating 2-DNF formulas on ciphertexts,” In Theory of cryptography,pp.

325–341, 2005.

[24] M. V.Dijk, C. Gentry, S.Halevi, and V.Vaikuntanathan,“Fully homomorphic encryption over the integers,” In
Advances in cryptology–EUROCRYPT 2010. pp. 24–43, 2010.

[25] J.Hoffstein, J.Pipher and J. H. Silverman,“NTRU: A ring-based public key cryptosystem,” In Algorithmic

number theory, pp. 267–288, 1998.
[26] C. Gentry,“A fully homomorphic encryption scheme,” Ph.D. Dissertation, Stanford University, 2009.

[27] O.Regev, “On lattices, learning with errors, random linear codes, and cryptography,”Proceedings of the thirty-

seventh annual ACM symposium on Theory of computing,pp. 84-93, 2009. doi:10.1145/1060590.1060603
[28] C. Gentry, ”Computing Arbitrary Functions of Encrypted Data,” Communications of the ACM, vol. 53 no. 3,

pp. 97-105, 2010. doi:10.1145/1666420.1666444
[29] J. Li, D. Song, S. Chen and X. Lu, “A simple fully homomorphic encryption scheme available in cloud

computing,” IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, pp. 214-217,

2012. doi: 10.1109/CCIS.2012.6664399

