

Kurdistan Journal of Applied Research (KJAR)

Print-ISSN: 2411-7684 | Electronic-ISSN: 2411-7706
Volume 4 | Issue 1 | June 2019 | DOI: 10.24017/science.2019.1.2

Received: 14 March 2019 | Accepted: 21 April 2019

Big Data Analysis Using Apache Spark MLlib and
Hadoop HDFS with Scala and Java

Hoger Khayrolla Omar Alaa Khalil Jumaa

Technical College of informatics Database Technology
Sulaimani Polytechnic University Technical College of Informatics

Kirkuk University Sulaimani Polytechnic University
Kirkuk, Iraq Sulaymanyah, Iraq

Hoger.omar@spu.edu.iq Alaa.alhadithy@spu.edu.iq

7

Abstract: Nowadays with the technology revolution the
term of big data is a phenomenon of the decade
moreover, it has a significant impact on our applied
science trends. Exploring well big data tool is a necessary
demand presently. Hadoop is a good big data analyzing
technology, but it is slow because the Job result among
each phase must be stored before the following phase is
started as well as to the replication delays. Apache Spark
is another tool that developed and established to be the
real model for analyzing big data with its innovative
processing framework inside the memory and high-level
programming libraries for machine learning, efficient
data treating and etc. In this paper, some comparisons
are presented about the time performance evaluation
among Scala and Java in apache spark MLlib. Many
tests have been done in supervised and unsupervised
machine learning methods with utilizing big datasets.
However, loading the datasets from Hadoop HDFS as
well as to the local disk to identify the pros and cons of
each manner and discovering perfect reading or loading
dataset situation to reach best execution style. The results
showed that the performance of Scala about 10% to 20%
is better than Java depending on the algorithm type. The
aim of the study is to analyze big data with more suitable
programming languages and as consequences gaining
better performance.
Keywords: Big data, Data analysis, Apache Spark,
Hadoop HDFS, Machine learning, Spark MLlib, Resilient
Distributed Datasets(RDD).

1. INTRODUCTION

At the present time with the huge improvement in the
information technology field, and the facilitation over the
internet for the billions of people through a huge database
with the diversity of digital devices, the term of "big data"
came out as a result. To put in a nutshell big data is the
announcement of the enormous dataset size [1]. In the
year2020, the number of linked devices will be roughly
one hundred billion thus, guiding to supplementary data
aggregation. Consequently clarifying and understanding
big data analytics techniques are being essential [2]. As

well as to the needs of changing from the traditional
database (Relational DB) that has many limitations with
the big data into NoSQL database (Non-Relational DB)
which is overcome these limitations and suits the
enterprise requirements [3]. Big Data mainly has three
features which are recognized by 3Vs (Volume, Variety
and Velocity). Some additional establishments and big
data experts have expanded this 3Vs framework to 5Vs
framework by adding the terms of Value and Veracity into
the big data explanation as shown in the Figure1 and
shortly reported as follows [4][5][6]:

1. Volume: denotes to big quantities of data from diverse
palaces, for example, mobile data, computers, servers and
etc. The advantage of treating and studying these great
sizes of data is earning valuable information on society and
enterprises.
2. Velocity: states the swiftness of transferring data. The
contents of data are regularly varying through the data
gatherings process and resulting in different forms which
are from several sources. This viewpoint needs new
procedures and techniques for sufficiently exploring the
streaming data.
3. Variety: mentions collecting different kinds of data
through different devices such as videos, images, etc.
Furthermore, these kinds of data might be unstructured,
semi-structured and structured.
4. Value: denotes to the manner of pulling meaningful
knowledge from enormous datasets. Value is the greatest
significant feature of any big data tools since it permits to
producing beneficial information.
5. Veracity: refers to the knowledge exactness or accuracy
(informative and valuable).

mailto:Alaa.alhadithy@spu.edu.iq
mailto:Alaa.alhadithy@spu.edu.iq

8

Figure 1: Big data features [7].

The aims of this article are for acquiring some knowledge
on analyzing big data through up to date tool which is
apache spark and hiring a few programming languages that
fully compatible with it. Also, the target is transforming
from traditional data stores (local disk) to big data
requirements like HDFS.

2. APACHE HADOOP AND APACHE
SPARK

A. Apache Hadoop:

Hadoop is an open-source structure written in Java
programming language, it permits to analyse big data
through the clients. Hadoop can scale up an individual host
to thousands of hosts with providing storage and
calculation for each one. Basically, the Hadoop framework
separated into three parts which are: Map Reduce, Yarn
and Hadoop Distributed File System (HDFS)[8] as shown
in figure 2.

Figure 2: Hadoop Parts [8].

• Map Reduce

Map Reduce part permits parallel processing of giant
dataset. It changes a big portion of data into smaller ones
to be treated individually on diverse data clients and
automatically collects the outcomes through the several
clients to bring back a sole result. Structured, semi,
structured and unstructured data It can be processed. The
structure consists of arrangement jobs, monitoring jobs and
re-running all the failed job [9].

• YARN

YARN stands for Yet Another Resource Negotiator and it
works as a Hadoop cluster resource manager which means
handling the Hadoop cluster resources such as Memory,
CPU, etc. Fortunately, version 2 and 3 of Hadoop with
Yarn opens a new door for data treating environment [10].

• HDFS

Hadoop Distributed File System (HDFS) generally divides
the file systems into data and metadata. HDFS has two
important benefits in comparing with the traditional
distributed file system. The first one is the great mistake
tolerance because it saves the duplicates (copy) of the data
in several data clients, which permits for distinguished
error to recover data from other data clients. The second
benefits it allows to use of big data sizes because the
Hadoop clusters can residence data sets in petabytes [11].

B. Apache Spark:

It is a model that performs a common data analysis on one
node and distributed nodes which means it is similar to
Hadoop. One of the advantages that it gives in memory
calculations technique for increasing data processing
speed. As well as, it can access Hadoop data storage
(HDFS) because it runs on the top of the existing Hadoop
node. Besides that, it can process the Streaming data like
Twits on Twitter in addition to the structured data in Hive
[12]. Basically, Spark divided into some parts and each
part has its crucial task as shown in figure 3.

Figure 3: Apache spark parts [12].

Spark Core is essential for the entire project. It offers
distributed task, scheduling, and I/O jobs. Spark uses a
particular data structure known as RDD (Resilient
Distributed Datasets) that is a logical collection of data and
separated over machines. RDD is Spark's primary
abstraction, which is a fault-tolerant collection of elements
that can be operated in parallel. They are immutable once
you create an RDD. They can be transformed but they
cannot be changed. They help to rearrange the
computations and optimizing the data processing [12].

Besides to Spark Core, a few further subparts like SQL,
Streaming, Machine Learning library and Graph X are
existing. All these parts have been established to
complement the job of the core. The whole subparts
constructed on the top of the core [13].

9

• Programming languages in Spark

Spark consists of many language libraries that support
performing various big data analysis. Spark written in
Scala so, support it perfectly and even the startup of spark
shell taking the users to Scala prompt automatically as
shown in figure 4. In addition to Scala, three other
programming languages exist in spark APIs which are
Java, Python and R.

Since the structure of spark constructed in Scala, therefore
writing a program using Scala language in spark offers to
get the newest characteristics that may not exist in the
further mentioned languages[14]. The sizes of Scala code
are naturally smaller than the equivalent size of Java code.
A lot of establishments that rely on Java in their works are
changing to Scala to enhance the scalability and reliability
[15].

Figure 4: Spark startups with Scala language.

• Spark read (load) the data from every place

Spark can read or access the data that stored on Hadoop
HDFS, Mesos, Mongo DB, Cassandra, H-Base, Amazon
S3 and the data source from the cloud. Which means it has
diversity access to data sources as shown in figure 5 and
this is one of the advantages of spark [16].

Figure 5: Spark diversity access to the data [16].

• Spark machine learning library

In general, machine learning algorithms according to the
style of the training data categorized into supervised and
unsupervised learning. The machine learning of spark
permits the data analytics and this library generally,
contains the famous algorithms as shown in figure 6.

Figure 6: Machine learning categorization [17].

Basically, the spark machine learning separated into two
sets as shown in figure7. The first set is MLlib and it was
built on the top of Resilient Distributed Datasets (RDD). It
covers the common approaches that proposed so far. The
next set is ML and it originates with the newest structures
of MLlib for building ML pipelines and this Application
Program Inter phase (API) is constructed on the Data
Frames features [18].in this paper, the focus will be on the
first set which is MLlib.

Figure 7: Spark machine learning bundles [12].

3. RELATED WORK

A huge number of articles are printed on the subject of
Apache spark recently. This article is the extension of the
previous research papers published in this field. A lot of
the researcher execute different algorithms utilizing spark
and provide much great work based on the model of spark.
For instance, some of them applying the algorithms of
spark MLlib bundle and the others applying the algorithms
of spark ML bundle in the analysis procedure. There have
been several approaches for analyzing big data with spark
this part of the paper focus on the latest movements and
contributions in the first mentioned field.

H. Sayedand et al, 2018 [19] in their paper compared the
hypothesis that the Spark ML bundle has preference over
the Spark MLlib bundle in the issues of performance and
accurateness when dealing with big data. They discovered
that the MLlib is better in the training time operation and
vice versa in the evaluation time operation.

In addition, S. Al-Saqqa and et al, 2018 [20] discussed on
the Spark's MLlib for hiring it in the classification of
sentiment big data scale. They find out that support vector
machine (SVM) is better than the other classifiers in the
matter of performance.

10

As well as, K. AL-barznji and et al, 2018 [21] talked
about sentiment analysis utilizing the algorithms of
machine learning such as Naïve Bayes and SVM for
analyzing the text with benefits of the huge capabilities of
Apache Spark. They found that the SVM is more accurate
in the condition of total average.

However, M. Assefi and et al, 2017 [22] explored some
views for growing the form of the Apache Spark MLlib 2.0
as an open source, accessible and achieve many machine
learning tests that related to the real world to inspect the
attribute characteristics. Also presents a comparison
among spark and Weka with proving the advantages of
spark over the Weka in many sides like the performance
and it is efficient dealing with a huge amount of data. on
the other hand, Weka is good for simple users with its GUI
and the diversity of algorithms which already exist in it.

Also, S. Salloumand et al, 2016 [23] stated an assessment
on the key structures of big data analytics using Apache
Spark. Furthermore, concentrates on the portions, concepts
and topographies of Apache Spark and displays the
advantages of it in the machine learning, analysis of the
graph and stream treating in the enormous data fields.
However, exposed the spark APIs and its compatibility
with various programming languages in addition to the
characteristics of the spark (RDD and data frame).

Likewise, A. Shoroand et al, 2015 [24] discovered some
Big Data Analysis thought and distinguished a few
important evidence from various big data streaming
sources like twits of Twitter with applying Spark tools on
it.

Moreover, A. Bansod 2015 [25] This researcher provides a
newer rating work with storing a huge Dataset in the
Hadoop Distributed File System HDFS and then analyzing
it by Apache Spark. Also, present a comparison among
spark and Hadoop Map-Reduce with showing the
preference of the first one in performance and scalability.

Besides that, S. N Omkar and et al, 2015 [26] they applied
a variety of classification methods on various datasets
from the Repository of Machine Learning (UCI). As well
the execution time and the accuracy of every classifier is
discovered with some comparisons between them.

Similarly, S. Gopalani and et al 2015 [27] compared the
Hadoop Map Reduce and the Apache Spark and then
provide a brief analysis of their performance by applying
the K-Means algorithm.

In this paper, the focus will be on the imaginative and
valuable ways of spark MLlib package that applied in big
data study in the present time, by mentioning updating
founded weakness and powerfulness with presenting the
basic advantages and disadvantages and also showing the
performance for the most famous machine learning
algorithms with Java and Scala.

4. METHODOLOGY

In this paper, two types of programming language have
been utilized, the first one is a Java programming language
and the second one is Scala programming language. Both
types evaluated in 32-bits and 64-bits Linux operating
system environment because the Windows operating
system is not efficient for processing big datasets and also
not support big data tools like Hadoop. For both languages
two different machine learning algorithms have been used,
one of them is supervised machine learning which is
Decision Tree Regression algorithm and the other one is
unsupervised machine learning which is Clustering
algorithm.

Each algorithm read the dataset two times which means
from two different places, one time the algorithm read the
dataset that stored previously in the local hard disk drive
and the second time read the dataset that stored or
uploaded previously to the Hadoop HDFS storage. In
summary 16 tests have been done, 8 tests for Java and the
same for Scala. 4 java tests in 32-bits Linux OS and the
other 4 Java tests in 64-bits Linux OS. Also, the same tests
applied for Scala as shown in figure8.

Figure 8: Tests structure in this paper.

• Tested Environments

Two VMWARE environment have been utilized to gain
these experimental outcomes. The first one is installed on
32-bits O.S and the second one installed on 64-bits. The
rest information about used environments shown in table 1.

11

Table 1. Tested Environments.

No. Resource Type Details
1 Host O.S Windows 10, 64-bits

2 Guest O.S
Debian 8 32 bits
Debian 9 64 bits

3 VMware Version 15.0.2 build-10952284

4 CPU

Intel(R) Core(TM) i5-4300U
CPU @ 1.90 GHz 2.50 GHz

5 Number of VMware
Processors

Four core

6 VMware RAM 8 GB
7 RAM in total 12 GB
8 HDD for VMware 40 GB
9 HDD in total 120 GB

10 Type of hard drive SSD
11 Number of nodes One node
12 Heap size Default 1 GB
13 Hadoop Version 2.7.1
14 Spark Version spark-2.4.0-bin-hadoop2.7

• Datasets

Two different big datasets have been utilized in the
Apache Spark MLlib 2.0 for analyzation process. Both of
the data are from the Machine Learning Repository (UCI).
The first one called Year Prediction MSD and it is about
the estimation of the publishing year of a song from audio
characteristics. The second dataset holds five groups of
text in the formula of bags of words and we took only
docword.nytimes from it [28]. Table 2 shown additional
details on the datasets.

Table 2: Characteristics of the dataset

Name
of the

Dataset

Type of

Algorithm

Size

Characteristi
cs

Attribute
Characte

ristics

YearPr
edictio
nMSD

Regression 566
MB Multivariate Real

Bag of
Words Clustering 1.1

GB
Text changed

to Libsvm Integer

5. ANALYSIS, EVALUATION, AND FINAL
EXPERIMENTAL RESULTS

This section is concisely demonstrating all the sixteen tests
in four experimental scenarios, hence each scenario
exhibits four tests as shown in Table 3 and described in
following.

Table3: Duration of processing time for all Tests.

OS
Linux

Data
Size

Algor.
type

Scala
Min:Sec

Java
Min:Sec

Proc-
time
(Disk)

Proc-
time

(Hadoop)

Proc-
time

(Disk)

Proc-
time

(Hadoop)

32-
bits

1.1
GB

K-
means

Clustering
28.35 31.14 36.39 45.50

32-
bits

566
MB DTR 01.27 01.32 01.48 02.07

64-
bits

1.1
GB

K-
means

Clustering
25.58 30.11 30.47 43.33

64-
bits

566
MB DTR 0.41 0.59 1.05 1.46

In scenario one, clustering K-means algorithm was applied
on 1.1 GB dataset in the Linux 32-bits O.S environment.
Two tests with Java have been done, one of them the data
was loaded from local disk and the other the data was
loaded from the HDFS. Similarly, two tests for Scala have
been done, one test the data was loaded from the local disk
and the other the data was loaded from HDFS.

What concluded from scenario one as shown in figure9
that the Scala programming language is faster than java
when we use a spark MLlib clustering algorithm.
However, reading the data from the local disk is faster than
reading from the HDFS.

In the second scenario, the decision Tree Regression
algorithm was applied on 566MB dataset from the type of
LIBSVM in the Linux 32-bits O.S environment. Two tests
with Java have been done, one of them the data was loaded
from the local disk and the other the data was loaded from
the Hadoop (HDFS). Similarly, the same two tests were
applied with the Scala. What concluded from this scenario
as shown in figure10 that the Scala programming language
is faster than Java programming when we use a spark
MLlib Regression algorithm. However, reading the data
from the local disk is faster than reading from the HDFS in
both programming languages.

In the third scenario, the same processes of the scenario
one with the same dataset and algorithm have been
repeated the sole difference is the Linux O.S environment
changed to 64-bits. What concluded besides to what
observed and stated from the scenario one that if we use
much bigger dataset the OS 32-bits environment may not
deal with it due to the heap size space problem because the
higher heap size for the mention OS is close to 2 GB. More
illustrations about the duration time of this scenario in
figure 11.

In the final scenario, the same processes of scenario two
with the same dataset and algorithm have been repeated
also the sole difference is the Linux O.S environment
changed to 64 bits. What concluded besides to what
observed and stated in the (Second and Third scenarios)

12

that if the dataset contains a huge number of attributes or if
we put a massive number of Depth and Bins in any
supervised algorithms similarly, the heap size space
problem or garbage collection problem will appear in the
32-bits OS and it can't be solved due to the mentioned
reason. Figure 12 showed the time difference between
every test in this scenario.

Figure 9: K-means algorithm applied at 1.1.GB dataset and

Linux 32-bits.

Figure10: Decision Tree Regression algorithm applied on 566

MB dataset and Linux 32-bits

Figure 11: K-means algorithm applied at 1.1.GB dataset and

Linux 64-bits.

Figure 12: Decision Tree Regression algorithm applied on 566

MB dataset and Linux 64-bits

6. DISCUSSION

It is good to state some problems during the test processes
with presenting the solutions too:

• Not enough space in the temp: Because the
operation of the processing totally being located
in the temp folder of the Linux 32-bits O.S
normally the size of a temp folder is in MB and
cannot stand big data size. The solution is
increasing the size of temp into 1 GB from the
Terminal as root by below command for affording
huge data calculation.

Mount –t tmpfs –o size=1073741824,mode=1777
overflow /tmp.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

 disc time hadoop
time

 disc time hadoop
time

Scala Java

Linux 32 Bits 1.1 GB Clustering

0.00

0.50

1.00

1.50

2.00

2.50

 disc time hadoop
time

 disc time hadoop
time

Scala Java

Linux 32 Bits 566 MB D.Tree Regression

0
5

10
15
20
25
30
35
40
45
50

 disc time hadoop
time

 disc time hadoop
time

Scala Java

Linux 64 Bits 1.1 GB Clustering

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

 disc time hadoop
time

 disc time hadoop
time

Scala Java

Linux 64 Bits 566 MB D. Tree Regression

13

• Java heap size space is not enough: at the
beginning of using any IDE (Integrated
development environments) like Eclipse,
NetBeans or any others IDE, the default heap size
space for the project is between 64 to 256 MB
and that space is not enough for computation
large dataset. The solution is to increase it into
1GB to be like the spark default heap space. In
bellow paths of the IDE:

Click on application Name – Properties-Run-VM
Option- then set 1GB.

• Weka can’t read a huge data: in the beginning,
our intent was to compare the time performance
between what presents in this paper and the
normal Weka program but unfortunately, Weka
cannot afford a huge dataset file. Especially it
needs much more time than the spark just for
reading without processing it. The solution is to
change the Weka environment and adding a new
package like distributed Weka Hadoop or spark
and that might be a good topic to further research.

• Windows O.S can’t deal with big data:
windows can support Apache spark but it has a
problem when processing a huge dataset in
addition, it does not support Apache Hadoop
which means Hadoop doesn't set up on windows
environment. So the solution is utilizing the
Linux operating system.

7. CONCLUSION

In the era of Big Data that we live in it, many new analytic
tools like Apache Spark have been established to treat the
procedures of Big Data perfectly. Spark offers a great
performance and fault tolerant model with the scalability
in analyzing big data framework. This paper works on the
Apache Spark for big data analysis and then compares the
Scala of spark with the Java in the spark MLlib bundle. It
is seen that the Scala of Spark raises the speed calculation
of the algorithms and finishes them in less time as
compared to Java. This preference of Scala noticed in
supervised machine learning algorithms such as
Regression and unsupervised machine learning algorithm
like Clustering. In addition, this research compared loading
a big dataset from local disk and from the Hadoop HDFS
storage. it appears that local disk is a little bit faster than
HDFS but, it could be much faster if the Hadoop being
distributed not in a single node like this paper. Because
there are many elements that affect the time factor in the
Hadoop distribution environment such as the method of
connection. On the other hand, the advantage of the HDFS
over the local disk is holding or storing Petabytes of data
in case if it is being distributed which is the local disk
absolutely cannot handle it. Further researches may find
the optimal Big data analysis procedures and provide an
efficient solution in this field.

The future work of this paper could be applied with four
additional modifications. The primary one is changing the
environment from a single node cluster into a multi-node
and definitely that lead to gain better performance with the
capability of executing larger data sets. The next alteration
is reading the dataset from variety of storage that supports
big data atmosphere for instance, Mongo DB, HBase,
Cassandra, Couch-base and etc. for comparing which
storage is more compatible with the spark and as
consequences that decrease the request time which means
reducing the execution time in the end. The third
modification is comparing the other programming
language performance in the matter of machine learning
which is already supported by spark such as, R and
Python. The final modification is using all the previous
changes with the second bundle of spark machine learning
library which is ML instead of spark MLlib bundle.
Because ML bundle builds on the dataset and data frame,
unlike the MLlib bundle that builds on the RDD. Then
demonstrate the accuracy and the performance of each
bundle with a comparison between them.

8. REFERENCES

[1] N. Ibrahim, Alaa Hassan, Marwah Nihad, "Big data analysis of
web data Extraction," International Journal of Engineering &
Technology, vol. 7 (4.37), p. 168, 2018.

[2] "Government Office for Science. The Internet of Things: making.
2014. The Internet of Things: making," 2014. [Online]. Available:
https://www.gov.uk/government/uploads/system/uploads/attachme
nt_data/file/409774/14-1230-internet-of-things-review.pdf.
[Accessed 1 3 2019].

[3] A. K. Jumaa, "Secured Data Conversion, Migration, Processing
and Retrieval between SQL Database and NoSQL Big Data,"
DIYALA Journal for pure sciences, vol. 14, no. 4, p. 68, October
2018.

[4] G. Bello-Orgaz, J. J. Jung, D. Camacho, "Social big data: Recent
achievements and new challenges," Elsevier B.V Inf. Fusion, Vols.
28,, p. 45–59, 2016.

[5] K. AL-BARZNJI, A. ATANASSOV, "A SURVEY OF BIG
DATA MINING: CHALLENGES AND TECHNIQUES," in
Proceedings of 24th International Symposium "Control of Energy,
Industrial and Ecological Systems, Bankia, Bulgaria, May 2016.

[6] R. JANOŠCOVÁ, "Mining Big Data in WEKA," in 11th IWKM,
Bratislava, Slovakia, October 20 – 21, 2016.

[7] H. Özkösea, Emin Ari, Cevriye Gencer, "Yesterday, Today and
Tomorrow of Big Data," Procedia - Social and Behavioral
Sciences, vol. 195, p. 1043, 2015.

[8] "Apache Hadoop," Apache software foundation, [Online].
Available: https://hadoop.apache.org/. [Accessed 6 3 2019].

[9] N. Pandey, Rajeshwari S, Shobha Rani BN, Mrs. Mounica B, "A
Comparison on Hadoop and Spark," International Journal of
Innovative Research in Computer and Communication
Engineering, vol. 6, no. 3, p. 2062, March 2018.

[10] Y. Perwej, Bedine Kerim, Mohmed Sirelkhtem, Osama E. Sheta,
"An Empirical Exploration of the Yarn in Big Data," International
Journal of Applied Information Systems (IJAIS), vol. 12, p. 19,
December 2017.

[11] T. Ruzgas, Kristina Jakubėlienė, Aistė Buivytė, "Big Data Mining
and Knowledge Discovery," Journal of Communications
Technology, Electronics and Computer Science, no. 9, p. 7, 2016.

[12] Apache software foundation, 24 Feb 2019. [Online]. Available:
http://spark.apache.org/.

[13] Diego García-Gil, Sergio Ramírez-Gallego, Salvador García,
Francisco Herrera, "A comparison on scalability for batch big data
processing on Apache Spark and Apache Flink," Big Data
Analytics, p. 3, 2017.

14

[14] Firoj Parwej,NikhatAkhtar,Dr. Yusuf Perwej, "A Close-Up View
About Spark in Big Data Jurisdiction," V. Surekha. Int. Journal of
Engineering Research and Application www.ijera.com, vol. 8, no.
1, p. 31, January 2018.

[15] Tarun Kumawat, Pradeep Kumar Sharma, Deepak Verma, Komal
Joshi, Vijeta Kumawat, "Implementation of Spark Cluster
Technique with Scala," International Journal of Scientific and
Research Publications, vol. 2, no. 11, p. 501, November 2012.

[16] D. U. R. Pol, "Big Data Analysis: Comparision of Hadoop
MapReduce and Apache," IJESC, vol. 6, no. 6, p. 6390, 2016.

[17] B. Kaluža, Machine Learning in Java, UK: Packt Publishing Ltd,
2016.

[18] Salvador García*, Sergio Ramírez-Gallego, Julián Luengo, José
Manuel Benítez, Francisco Herrera, "Big data preprocessing:
methods and prospects," Big Data Analytics, p. 9, 2016.

[19] Hend Sayed, Manal A. Abdel-Fattah, Sherif Kholief, "Predicting
Potential Banking Customer Churn using Apache Spark ML and
MLlib Packages: A Comparative Study," (IJACSA) International
Journal of Advanced Computer Science and Applications, vol. 9,
pp. 674-677, Nov 2018.

[20] Samar Al-Saqqaa, b, Ghazi Al-Naymata, Arafat Awajan, "A
Large-Scale Sentiment Data Classification for Online Reviews
Under Apache Spark," in The 9th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks, EUSPN
Belgium, 2018.

[21] Kamal Al-Barznji, Atanas Atanassov, "Big Data Sentiment
Analysis Using Machine Learning Algorithms," in Proceedings of
26th International Symposium "Control of Energy, Industrial and
Ecological Systems, Bankia, Bulgaria, May 2018.

[22] Mehdi Assefi, Ehsun Behravesh, Guangchi Liu, and Ahmad P.
Tafti, "Big Data Machine Learning using Apache Spark," in 2017
IEEE International Conference on Big Data, Boston, MA, USA,
11-14 Dec. 2017.

[23] Salman Salloum, Ruslan Dautov, Xiaojun Chen1, Patrick
Xiaogang Peng, Joshua Zhexue Huang, "Big data analytics on
Apache Spark," Int J Data Sci Anal -Springer International
Publishing Switzerland, September 2016.

[24] Abdul Ghaffar Shoro, Tariq Rahim Soomro, "Big Data Analysis:
Ap Spark Perspective," Global Journal of Computer Science and
Technology: C Software & Data Engineering, vol. 15, no. 1, pp. 7-
14, 2015.

[25] A. Bansod, "Efficient Big Data Analysis with Apache Spark in
HDFS," International Journal of Engineering and Advanced
Technology (IJEAT), vol. 4, no. 6, pp. 313-315, August 2015.

[26] Mohit1, Rohit Ranjan Verma, Sameeksha Katoch, Ashoka
Vanjare, S N Omkar5, "Classification of Complex UCI Datasets
Using Machine Learning Algorithms Using Hadoop," International
Journal of Computer Science and Software Engineering (IJCSSE),
vol. 4, no. 7, pp. 190-198, July 2015.

[27] Satish Gopalani, Rohan Arora, "Comparing Apache Spark and
Map Reduce with Performance Analysis using K-Means,"
International Journal of Computer Applications (0975 – 8887),
vol. 113, pp. 8-11, March 2015.

[28] "UCI machine learning repository," [Online]. Available:
http://archive.ics.uci.edu/ml/index.html. [Accessed 26 2 2019].

