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1. Introduction 

Cloud computing is a foundational innovation in information technology, evolving from older 

models like grid, parallel, and distributed computing to deliver scalable on-demand services over the 

internet [1]. In the field of information technology, cloud computing is considered to be one of the most 

significant computing concepts of recent times. It developed as an outcome of advancements in existing 

computing models, including parallel, grid, distributed, and other architectures [2, 3]. Cloud compu-

ting provides three basic categories of service to users: Software as a Service, Platform as a Service, and 

Infrastructure as a Service. End users, who utilize cloud-based applications in everyday business, are 

the main consumers of Software as a Service [4, 5]. Cloud service providers are responsible for manag-

ing and protecting the storage they offer as part of their overall cloud services, which also include com-

puting and networking. Safeguarding and ensuring the integrity of user data is of primary importance 

[6]. Users have access to an unlimited number of resources and services through cloud platforms. With 

Original Article   

AI-Based Load Balancing Using Decision Tree Regres-

sor for Parallel Matrix Computation in Cloud Environ-

ments 

Lina Sarkawt Hiwa a *, Zryan Najat Rashid 
b  

 

a Department of Information Technology, Technical College of Informatics, Sulaimani Polytechnic University, Sulaymaniyah, Iraq. 
b Department of Computer Networks, Technical College of Informatics, Sulaimani Polytechnic University, Sulaymaniyah, Iraq. 

 
 

Submitted: 25 June 2025 

Revised: 10 July 2025 

Accepted: 1 August 2025 

 

* Corresponding Author: 

lina.sarkawt.tci@spu.edu.iq 

 

 

Keywords:   AI-Based load balanc-

ing, Cloud computing, Parallel pro-

cessing, Machine learning, Deci-

sion tree regressor. 

 

How to cite this paper: L. S. Hiwa, 

Z. N. Rashid, “AI-Based Load Bal-

ancing Using Decision Tree Regres-

sor for Parallel Matrix Computa-

tion in Cloud Environments”, 

KJAR, vol. 10, no. 2, pp: 43-54, Dec    

2025, doi: 10.24017/science.2025.2.4 

  

 

 
Copyright: © 2025 by the authors. 

This article is an open-access article 

distributed under the terms and 

conditions of the Creative Com-

mons Attribution (CC BY-NC-ND 

4.0) 

 

Abstract: Cloud computing is an evolving technology of current information 

systems that supports dynamic sharing and elastic provision of resources and 

services. With increasing demands for computational resources, efficient 

workload assignment has become an important challenge. Current load bal-

ancing methods based on traditional approaches fail to suit dynamic server 

performance and contribute to the inefficient utilization of available re-

sources, latency, and delays. In response to this challenge, this paper suggests 

an AI-driven load balancer based on a decision tree regressor to dynamically 

control task allocation within a parallel cloud system. The system operates to 

handle computationally heavy tasks, i.e., matrix multiplication, across differ-

ent servers based on real-time performance measures such as Central Pro-

cessing Unit (CPU) usage, memory utilization, time of execution, and net-

working latency. Model training was done with historical data obtained from 

past executions, incorporated into the web server to facilitate adaptive deci-

sion-making. It was tested experimentally with different levels of server 

scalability as well as matrix complexity. It was contrasted with a static, man-

ual load balancer. All critical performance measures were found to be signif-

icantly improved by the AI-based methodology, with the total execution time 

reduced from 7,060 milliseconds to 1,000 milliseconds; network latency was 

also reduced to 5.12 ms, down from 214 ms; and the method reduced the 

overall use of CPU by 33% and overall use of memory by more than 85%. 

These findings confirm that intelligent, data-driven load balancing offers su-

perior scalability, responsiveness, and efficiency for cloud-based parallel pro-

cessing systems. 
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increasing data volumes being stored and computed in the cloud, the challenges associated with man-

aging efficient resources have also increased [7]. 

Parallel computing enables the simultaneous execution of operations by decomposing large com-

putational problems into smaller subtasks that are processed concurrently across multiple processors 

or nodes. This approach spans multiple levels of parallelism—including bit-level, instruction-level, 

data-level, and task-level—and is crucial for scaling the matrix computation workloads typical in mod-

ern cloud infrastructures [8]. 

Load balancing, one of the most important of these challenges, is a process used to distribute loads 

to different computing nodes so then no single server is overwhelmed as others remain idle [9]. Effec-

tive load balancing improves system performance through optimizing how resources are used and en-

suring the timely delivery of tasks [10]. Traditional static methods often fail to adapt to runtime varia-

bility; more recent adaptive strategies leverage machine learning and optimization techniques to dy-

namically assess and allocate resources based on real-time system metrics [11]. Several load balancing 

algorithms have been developed to resolve this problem, and each attempt to distribute resources eq-

uitably and optimally to cloud tasks. Nevertheless, static methods do not satisfactorily adapt to actual 

server situations, especially for large systems that have to process millions of user requests concurrently 

[12]. Researchers are turning to machine learning (ML) and parallel computing to meet these chal-

lenges. Intelligent load balancing is provided by machine learning models, especially those with real-

time prediction capability. In parallel computing, instructions are executed concurrently, breaking 

down complex issues into manageable subproblems for simultaneous computation [13]. The four most 

important types of parallelism—bit-level, instruction-level, data-level, and task-level—offer frame-

works for constructing scalable, high-performance systems [14, 15]. The study of parallel computing 

has grown in importance in computer science and has been essential for the capture of high-perfor-

mance solutions. The development of multi-core and many-core computer systems toward a larger 

number of cores confirms that parallelism is the preferred technique for optimizing an algorithm [16, 

17].  

This paper introduces a novel, lightweight AI-driven load balancing system employing a decision 

tree regressor, specifically designed for cloud-based matrix computation platforms. The decision tree 

regressor was chosen for its simplicity, fast prediction speed, and effectiveness with small to medium 

datasets. Decision tree regression is a supervised learning technique used to estimate continuous target 

variables by partitioning input feature space into hierarchical segments via training-data-driven split-

ting criteria. It is valued for its interpretability, computational efficiency, and suitability for small- to 

medium-sized datasets where real-time prediction performance is important [18, 19]. Unlike more com-

plex models such as deep learning or genetic algorithms, decision trees are easy to interpret, require 

less computational power, and are well-suited for real-time decision-making in dynamic environments 

[20]. This makes them a practical solution for load balancing in cloud systems, where quick and efficient 

responses are essential. 

In contrast to the existing approaches that rely on deep learning or theoretical optimization frame-

works, our method provides real-time, interpretable, and experimentally validated task allocation 

based on live performance metrics. To the best of our knowledge, this is the first study to apply a deci-

sion tree regressor for parallel matrix multiplication within a real-world cloud infrastructure. The result 

is a scalable and efficient alternative to both static and computationally intensive AI-based load balanc-

ing methods. A decision tree is a significant learning technique that is mostly used for data analysis. It 

can solve both regression and classification problems, making it a versatile tool for intelligent system 

design [21]. The proposed scheme uses real-time metrics such as latency, execution time, memory uti-

lization, and Central Processing Unit (CPU) usage to dynamically distribute loads between multiple 

servers. According to the experimental findings, this methodology significantly exceeds traditional 

manual balancing techniques in terms of execution speed, system efficacy, resource consumption, and 

network responsiveness.  

The layout of this paper is structured as follows: Section 2 discusses related works on load balanc-

ing. Section 3 describes the methodology used to design and implement the AI-driven load balancer 

based on the decision tree regressor. Section 4 states the experimental design and the results achieved 
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through simulation and real-world testing. Section 5 discusses and interprets results on system perfor-

mance and efficiency. Section 6 concludes the paper. 

2. Related Works 

The difficulty of efficient load balancing in cloud computing has been widely investigated in the 

current literature, especially with modern data centers under rising pressures to process massive vol-

umes of user demands, constrained resources, and latency-critical operations. Conventional load bal-

ancing methods tend to be insufficient in dynamic environments because they fail to respond to chang-

ing server performance in real time. Since these shortcomings were identified, several researchers have 

explored adaptive intelligent methods, such as optimization algorithms and machine learning-based 

methods, for addressing these shortcomings and improving the overall performance of cloud systems. 

One of these methods is proposed by Singhal et al. [22] who proposed the Rock Hyrax load balancing 

algorithm for the cloud. It offers a dynamic load distribution between machines based on availability 

and system load, reducing overall make-span length and energy consumption. While showing an over-

all decrease between 10–15% in task completion time and 8–13% in energy use, the approach remains 

based on an established optimization scheme which may restrict its applicability across a variety of 

workloads and real-time scenarios. 

In a parallel line of research, Zhang et al. [23] proposed an optimization framework based on ma-

chine learning using genetic algorithms and deep learning for scheduling resources in the cloud. Their 

proposed model remedies drawbacks like skewed task allocation and poor resource utilization. Alt-

hough the methodology is strong and highlights better system performance, the research is still pri-

marily theoretical, with no experimental evidence in dynamic, real-world environments with system 

heterogeneity and sudden spikes in load. 

Similarly, Pradhan et al. [24] proposed Deep Reinforcement Learning with Parallel PSO (DRL-

PPSO), which blended deep learning with a particle swarm optimization model to improve scheduling 

in cloud environments. Based on a series of simulations, the study achieved improved task handling 

speed, accuracy, and reward generation compared to using traditional approaches. While the DRL-

PPSO model is promising, its high complexity and heavy dependence on large training sets are of con-

cern for use in resource-restricted or high-growth environments. 

Kanbar et al. [25] compared static and dynamic load balancing approaches, pointing to the weak-

nesses of static models in heterogeneous cloud environments. Their work highlights the merits of dis-

tributed and dynamic methods, especially with respect to fault tolerance and the adaptability of work-

load. It does mention that it is hard to implement these models based on the requirement for constant 

environment monitoring and the likelihood of additional system overhead. 

In a similar direction, Malipatil et al. [26] proposed a deep reinforcement learning-based workload 

scheduling model that adapts dynamically to changing cloud conditions. Their system uses Deep Q-

Networks (DQN) to analyze workload features such as execution time, CPU, and memory usage before 

making scheduling decisions. The model achieved latency reductions up to 15 ms, throughput up to 

500 tasks/sec, and 92% load balancing efficiency, along with 97% Quality of Service. While highly ef-

fective, their method is relatively complex and demands significant computational resources, which 

may not be ideal for lightweight, real-time systems. 

Albalawi et al. [27] proposed a dynamic scheduling framework aimed at improving task allocation 

and load balancing in cloud-based parallel and distributed environments. The model combines multi-

ple metaheuristic techniques—such as sunflower whale optimization and a hybrid ant colony–genetic 

algorithm—to address the performance bottlenecks caused by workload variability and system heter-

ogeneity. This aligns with the current study’s focus on achieving efficient and adaptive task scheduling 

in real-time cloud environments. Both studies share a common objective of enhancing load distribution 

and optimizing resource utilization under parallel processing conditions. However, while Albalawi's 

framework demonstrates high performance in terms of makespan and energy efficiency, it introduces 

considerable algorithmic complexity and computational cost due to the nature of its multi-phase me-

taheuristic design. 
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In a related study, Mahmoud et al. [28] introduced the task scheduling–decision tree algorithm, 

which applies a supervised decision tree model for multi-objective task scheduling in heterogeneous 

cloud environments. The task scheduling–decision tree algorithm dynamically allocates tasks to virtual 

machines by evaluating system conditions, aiming to optimize makespan, load balancing, and resource 

utilization simultaneously. Compared to conventional scheduling techniques such as Heterogeneous 

Earliest Finish Time, Technique for Order Preference by Similarity to Ideal Solution – Entropy Weight 

Method (TOPSIS-EWM), and Q-Learning–based Heterogeneous Earliest Finish Time, Tabu Search De-

cision Tree achieved improvements in load distribution (by up to 59.06%), reduced makespan (by 

5.21%), and enhanced overall system efficiency. Notably, the model maintains low computational com-

plexity and interpretable structure, which addresses a major limitation of other machine-learning–

based schedulers such as DRL-PPSO and DQN, whose effectiveness comes at the cost of increased 

model complexity and resource demands. Although task scheduling–decision tree does not specifically 

focus on matrix computation tasks, its general-purpose scheduling logic and decision tree–based adap-

tiveness make it highly applicable to cloud-based parallel processing systems, such as the one proposed 

in the current study. 

Together, these studies show an emerging agreement regarding the need for adaptive, intelligent 

load balancing methods that can function under dynamic scenarios. While each of the proposed tech-

niques possesses certain merits—their accuracy in optimization, energy efficiency, or parallel schedul-

ing—the majority of them still suffer from important shortcomings involving scalability, real-time 

adaptability, or integration with heterogeneous systems. It highlights an urgent requirement for solu-

tions that maximize task distribution while reacting adaptively to run-time performance indicators 

without adding too much complexity or computational overhead. 

3. Materials and Methods  

The purpose of this study is to design and test an AI load balancer for parallel computation tasks 

in cloud computing. It is intended to balance matrix computation tasks (that is, matrix multiplication) 

among several servers. This study employs a decision tree regressor to make informed task assignment 

decisions. Decision trees ask questions and develop decision rules based on the structure of the datasets 

that make up a problem in order to create classification and regression models that resemble trees [29]. 

Inquiries begin at the root node, the basic element of the tree structure, and the tree branches until they 

reach the leaves, the last component of the tree structure [30, 31]. 

This machine learning model will predict which server is most appropriate based on performance 

measures in real time. The AI-based load balancer was tested against a standard manual load balancer 

using various matrix sizes and appropriate server configurations. 

 

3.1. System Architecture 

The proposed system comprises three key components that work together to perform distributed 

matrix computations in a cloud environment: the client side, the web server (cloud side), and the server 

side. 

On the client side, users initiate the process by generating two square matrices of equal dimensions 

(e.g., 128×128 or 512×512), filled with randomly generated numerical values to simulate computational 

workload. These matrices are then transmitted to the cloud system for processing, either via a web-

based interface or a mobile application. 

The web server, serving as the intermediary between clients and servers, manages incoming ma-

trix multiplication requests and is responsible for task allocation. The server implements load balancing 

logic, which can function either manually or through an AI-based approach employing a decision tree 

regressor. To support optimal task distribution, the server continuously retrieves real-time perfor-

mance metrics from all connected servers. 

On the server side, matrix computations are executed by multiple servers deployed in a real-world 

environment. Two physical machines were used to host four virtual servers—two per machine. Each 

machine was equipped with an Intel Core i7 processor, 8 cores, 16 GB of random access memory, and 
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a 512 GB Solid State Drive. All servers were connected through a 1 Gbps local area network. Upon 

completing the computations, the results were sent back to the web server, which then returned them 

to the client. Figure 1 illustrates the complete system architecture, depicting the workflow from client 

request submission to final result delivery via the AI-based load balancer. 

 

 
Figure 1: System architecture of the AI-based load balancing system using a decision tree regressor. 

 

3.2. AI-Based Load Balancer 

Our proposed load balancer uses a decision tree regressor, a supervised learning algorithm that 

predicts numerical values from a given set of input features [32]. Annotated data is referred to as a 

training set in SML, whereas unannotated data is the testing set. Class labels are used for annotations 

with discrete values, while continuous target values are used for constant numerical annotations. Re-

gression and classification are the two categories under which SML issues belong. Predicting the dis-

crete values that fit into a certain class is the goal of classification, a form of SML where the results have 

discrete values. The form of SML known as regression is obtained from labelled datasets and predicts 

continuous-valued results for the most recent data that has been introduced into the algorithm [33, 34]. 

A decision tree divides a dataset into various leaves and branches. A decision tree's nodes each have 

two or more branches, and each branch evaluates the value of the quality. The target value that we 

want to predict is represented by the leaf node. It uses this model to predict how quickly each server 

can accomplish a specified task [35, 36]. 

3.2.1. Input Features 

The AI-based load balancer makes task assignment decisions based on real-time performance data 

collected from each server. It utilizes four key indicators as input features: CPU usage, memory usage, 

execution time, and network latency. CPU usage reflects the portion of a server’s processing power 

currently in use, while memory usage indicates the percentage of random-access memory being con-

sumed. Execution time measures how long a server takes to complete its most recent task, expressed in 

milliseconds for precision. Network latency captures the delay experienced when transmitting data 

between the server and the client. These features collectively provide a comprehensive snapshot of each 

server’s performance, enabling the system to assess which server is best suited for incoming computa-

tional workloads. 

Using these inputs, the decision tree regressor predicts the estimated execution time for each 

server. The server with the shortest predicted execution time is selected to handle the incoming matrix 

multiplication task. This ensures that computational workloads are distributed efficiently, reducing 

overall processing time and avoiding server bottlenecks. The model’s predictive capability enables it to 

adapt dynamically to changing server conditions in real time. 

The decision tree regressor was trained using historical data from prior matrix computation tasks 

conducted on local servers. The training dataset included actual measurements for CPU and memory 

usage, execution time, and network latency, along with the corresponding task completion durations. 
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Training was performed offline using a general-purpose machine learning framework, such as Scikit-

learn in Python. Once the model was trained, it was embedded into the web server to perform real-

time predictions and guide load balancing decisions during system operations. Figure 2 illustrates a 

simplified representation of the decision tree structure, showing how the model evaluates the perfor-

mance indicators to select the optimal server for each task. 

. 

 

 
Figure 2: Simplified decision tree used by the AI-based load balancer to determine the optimal server based on CPU usage, 

execution time, and memory usage. 

 

 

3.3. Manual Load Balancer 

To evaluate the effectiveness of the proposed AI-based load balancer compared to the manual load 

balancing approach, a series of controlled experiments were conducted using varying system configu-

rations and testing conditions. The core computational task selected for these experiments was matrix 

multiplication, involving the multiplication of two square matrices. Matrix sizes of 128×128 and 512×512 

were used throughout the testing due to their computational intensity and common application in par-

allel processing environments. 

The experimental environment was configured to simulate realistic performance conditions across 

a variety of server setups. Multiple servers were used, each representing different levels of CPU and 

memory utilization to closely mirror real-world cloud computing scenarios. This setup enabled the 

testing of the load balancing system under both uniform and heterogeneous resource availability. 

Key performance indicators were recorded to assess the efficiency and responsiveness of each load 

balancing method. The metrics included CPU usage, memory usage, execution time, and network la-

tency for each server, as well as aggregated measurements for the system as a whole. Task distribution 

data was also collected to evaluate how evenly computational workloads were allocated across availa-

ble servers, providing insight into load balancing fairness and resource utilization. Execution time was 

measured in milliseconds to capture the precision of task completion, while network latency repre-

sented the communication delay between clients and servers. 

The system workflow begins when a client initiates a matrix multiplication request. The web 

server then collects real-time performance data from all connected servers. Depending on the selected 

balancing method, the system either assigns the task to the next server in a fixed sequence (manual 

approach) or uses the decision tree regressor to determine the server with the most favorable perfor-

mance conditions (AI-based approach). Once the selected server completes the task, the result is sent 

back to the web server and then returned to the client. Throughout this process, all relevant perfor-

mance metrics are logged for analysis and comparison. 

The experimental setup included four servers identified by their roles and unique IP addresses: 

the Main server, Server A, Server B, and Server D. These servers were connected via a local area net-

work, forming a distributed environment suitable for parallel processing. The use of multiple matrix 

sizes and varying system conditions allowed for a comprehensive evaluation of the performance, scala-

bility, and adaptability of the AI-based load balancing approach compared to its manual counterpart. 
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4. Results 

This section presents the performance outcomes of two load balancing techniques implemented in 

a parallel cloud environment for matrix multiplication tasks: a manual (static) load balancer and an AI-

based load balancer using a decision tree regressor. Experiments were conducted using varying matrix 

sizes and different numbers of server. Performance was evaluated based on six key metrics: task distri-

bution, CPU usage, memory usage, execution time, network latency, and scalability. The experimental 

setup involved four servers—the Main server, Server A, Server B, and Server D—each connected 

through a common network and assigned a unique IP address. This setup enabled the effective evalu-

ation of load balancing performance under different system conditions. 
 

4.1. Task Distribution 

Task distribution is the process of allocating incoming workloads or requests to different servers 

within the network. Effective distribution helps prevent individual servers from becoming overloaded 

while others remain underutilized, ensuring optimal system performance and resource usage [37]. 

In the case of the AI-based load balancer, the allocation of tasks across servers is fairly balanced. 

The highest percentage of tasks, 32.08%, was assigned to 192.168.33.3:5004 (Server_D), while the lowest, 

6.19%, was allocated to 192.168.33.3:5000 (Main Server). This distribution reflects the decision-making 

process of the AI-based system, which relies on real-time performance metrics such as CPU usage, 

memory availability, and network latency. The main server, which also manages task coordination and 

system control functions, was intentionally assigned fewer computational tasks to maintain its respon-

siveness. This design choice supports the system’s logic, ensuring that computational loads are directed 

to servers with greater availability and fewer responsibilities. 

By contrast, the manual load balancer employs a static task allocation strategy, distributing work-

loads to servers in a predetermined sequence without accounting for current system conditions. This 

approach often leads to inefficiencies, as some servers may become overloaded while others remain 

underused due to the absence of dynamic performance evaluation during the task assignment. 

 

4.2. Best Server for Task 

In the AI-based load balancing approach, Server_D (http://192.168.33.3:5004) is identified by the 

system as the optimal server for executing the task. This selection is based on real-time performance 

metrics, including CPU utilization, memory consumption, execution time, and network latency. By 

evaluating these factors, the AI-based system dynamically determines which server is best suited to 

handle the workload under the current conditions, thereby maximizing efficiency and minimizing de-

lays. 

In contrast, the manual load balancer selects Server_B for the same task. However, this selection is 

made without evaluating the server’s current performance state. Because the manual method lacks real-

time adaptive capabilities, it cannot consistently select the most suitable server, potentially resulting in 

inefficiencies and imbalanced resource utilization. 

 

4.3. Server Performance Metrics 

4.3.1. AI Load Balancer Results 

The performance of the AI-based load balancer is summarized in Table 1, which presents the per-

server metrics across CPU usage, memory usage, execution time, and network latency. 

CPU usage across servers ranged from 3.9% to 20.5%, resulting in a total system CPU utilization 

of 43.09%. This distribution indicates that the AI-based load balancer achieved a well-balanced work-

load among the servers, avoiding both underutilization and excessive strain on any single node. 

Memory usage remained consistently low on all servers, with individual usage values ranging 

from 7.28512% to 7.29654%. The overall memory consumption across the system totaled 29.17%, 

demonstrating efficient resource utilization and minimal overhead. 
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Execution time varied between 0.1 milliseconds and 1,000.9 milliseconds across servers, with a 

total execution time of 1,001.2 milliseconds. This reflects the system’s ability to perform high-speed 

processing, particularly under the guidance of the AI-based load balancer. 

Network latency was also significantly minimized, ranging from 1.02056 milliseconds to 2.00496 

milliseconds per server. The total latency recorded was only 5.12361 milliseconds, indicating that the 

AI-based method effectively reduced communication delays and enhanced responsiveness within the 

cloud environment. 

 
Table 1: Per-server performance metrics using the AI Load Balancer. 

Server CPU Usage (%) Memory Usage (%) Execution Time (ms) Network 

Server_D 4.8 7.28512 0.1 1.02056 

Server_B 20.5 7.29256 0.1 1.05189 

Server_A 14.7 7.29409 0.1 1.04620 

Main_Server 3.9 7.29654 1,000.9 2.00496 

4.3.2. Manual Load Balancer Results 

In the manual load balancing setup, CPU usage across individual servers ranged from 9.8% to 

22.6%, with the total system CPU usage reaching 64.40%. This indicates a significantly higher pro-

cessing load compared to the AI-based approach, suggesting the less efficient distribution of tasks 

across the system. 

Memory consumption was considerably higher and more variable, ranging from 51.3% to 60.4% 

per server. The total memory usage reached 223.40%, reflecting poor memory management and indi-

cating that some servers were overburdened while others may have had available resources go unused. 

Execution time in the manual approach varied between 41.5 milliseconds and 59.5 milliseconds, 

with a total execution time of 7,064.5 milliseconds. This is substantially longer than the 1,001.2 millisec-

onds recorded under the AI-based load balancer, highlighting the impact of static task allocation on 

processing efficiency. 

Network latency under the manual load balancing method ranged from 42 milliseconds to 67 mil-

liseconds per server, with a total latency of 214.00 milliseconds. This is significantly higher than the 

5.12361 milliseconds recorded in the AI-based setup. These findings demonstrate that the AI-based load 

balancer substantially outperforms the manual method in terms of execution speed and communication 

efficiency, as further illustrated in figure 3. 

 

 
Figure 3: Bar chart comparing execution time and network latency for AI-based and manual load balancing. 

 

4.4. General Findings 

The AI load balancer enhances resource consumption and produces better results because it can 

choose the most effective server as well as dynamically balance workloads and efficiently control CPU 
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and memory consumption, ensuring neither overuse nor underutilization, while also greatly increasing 

task processing execution speed. Additionally, AI-based load balancing enhances system response 

times and speeds up data transfer, which decreases network latency. Manual load balancing uses more 

resources than is necessary, which results in inefficient allocation. All things considered, AI-based load 

balancing demonstrated consistently better performance under varying workloads because it improves 

system performance. 

 

4.5. Theoretical Outcomes 

The AI load balancer enables faster task processing with lower latency while optimizing CPU and 

memory use to improve system performance. Without human intervention, it can adapt dynamically 

to growing workloads because of its power-efficient scaling features. It lowers hardware needs through 

improved resource management, which results in cost savings. The AI model adjusted effectively to 

workload changes, minimizing delays during test runs, which increases system reliability. However, 

manual load balancing is impacted by a higher system load, higher network latency, slower reaction 

times because of longer execution durations, and increased CPU and memory consumption. Addition-

ally, it lacks the scalability required to effectively manage large, unpredictable workloads. Additionally, 

manual load balancing ineffectively distributes work, which wastes resources with particular servers. 

As shown in Table 2, the AI-based load balancer significantly outperforms the manual approach across 

all performance metrics. 

 
Table 2: Comparative performance analysis of the manual and AI-based load balancing methods.  

Metric 
Manual Load Bal-

ancer 
AI Load Balancer Optimal Choice Reasoning 

Task  

Distribution 
Static, unbalanced 

AI adapts dy-

namically 

AI (More 

adaptive) 

AI helps balance the workload, thus minimizing 

bottlenecks. 

CPU  

Usage 

 

Min: 9.8% 

Max: 22.6% 

Total: 64.40% 

Min: 3.9% 

Max: 20.5% 

Total: 43.09% 

AI (Better effi-

ciency) 

AI keeps the CPU from being overloaded or un-

derutilized, keeping it stable. 

Memory  

Usage 
 

 

 

Min: 51.3% 

Max: 60.4% 

Total: 223.40% 

Min: 7.28512% 

Max: 7.29654% 

Total: 29.17% 

AI (Optimized 

memory) 

AI effectively handles memory load without con-

suming an excessive amount of memory. 

Execution 

Time 
 

 

Min: 1,569.7 ms 

Max: 1,946.5 ms 

Total: 7.0645s 

Min: 0.1 ms 

Max: 1,001.1 ms 

Total: 1.001600s 

AI (Much 

faster) 

AI reduces execution time by enhancing server se-

lection. 

Network  

Latency 

Min: 42 ms  

Max: 67 ms 

Total:214.00ms 

Min: 1.02056 ms 

Max: 2.0049ms 

Total:5.12361ms 

AI (Lower la-

tency) 

AI reduces latency by going about the most effi-

cient way to select the best server. 

Resource 

Utilization 

 
 

Inefficient, leading  

to idle or over-

loaded servers 

Optimized, bal-

ancing server 

workloads 

AI (Better utili-

zation) 

AI contributes to the overall efficiency and perfor-

mance of the system. 

Scalability Limited High 
AI (Highly 

scalable) 

AI works well for dynamic workloads because it 

can adjust in real time. 

5. Discussion 

The results clearly demonstrate that the AI-powered load balancer, driven by a decision tree re-

gressor, delivers consistently better performance than the traditional manual method across all meas-

ured criteria. This improvement stems from its ability to make intelligent, data-driven decisions in real 

time, dynamically adjusting task allocation according to the live operational status of each server. By 

continuously monitoring CPU usage, memory consumption, and network conditions, the system can 

anticipate performance bottlenecks before they occur, reassign workloads accordingly, and maintain a 

balanced distribution of resources. This adaptability not only ensures optimal resource utilization but 

also enhances system stability, even when workloads fluctuate unpredictably. 
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One of the most striking results is the dramatic reduction in execution time—from 7,060 millisec-

onds to just 1,000 milliseconds—demonstrating the effectiveness of predictive task routing in minimiz-

ing delays and preventing overloads. By identifying the server with the shortest expected completion 

time for each incoming task, the AI system significantly reduces latency and increases throughput. 

These results align with the findings of Singhal et al. [22], who achieved similar gains in energy effi-

ciency and makespan reduction in dynamic environments, although their approach lacked the trans-

parency and interpretability of decision tree-based models, which offer clear reasoning for each deci-

sion made. 

Beyond processing speed, the system also achieved substantial improvements in resource balanc-

ing. CPU and memory usage were spread more evenly across servers, bringing overall memory usage 

down from nearly 223% to just 29.17%. This reduction is critical, as it helps avoid resource saturation—

a common cause of performance degradation and unexpected crashes in high-demand cloud environ-

ments. Comparable improvements have been observed in prior studies, such as the work by Pradhan 

et al. [15], where deep reinforcement learning enhanced resource handling; however, their approach 

required higher computational overhead and was more complex to implement. 

Network performance also benefited significantly, with latency decreasing from 214 milliseconds 

to slightly over 5 milliseconds. This improvement is particularly valuable for latency-sensitive applica-

tions, such as real-time analytics, online gaming, and financial transactions, where even small delays 

can impact user experience or operational accuracy. These results are consistent with the performance 

gains seen in delay-aware scheduling models like the LEWIS framework  [24] , which emphasize incor-

porating network delay into task allocation decisions. 

Perhaps equally important is the system’s scalability. As infrastructure size increased, perfor-

mance remained consistent, addressing one of the main limitations of static scheduling approaches in 

heterogeneous and growing cloud environments. This directly responds to the challenges highlighted 

by Kanbar and Faraj [25], who noted that traditional methods often struggle to adapt when system 

configurations change or when workloads scale up rapidly. 

Taken together, these findings strongly indicate that a lightweight, interpretable AI model such as 

the decision tree regressor is not only capable of delivering high processing speeds and operational 

efficiency but also excels in adaptability, scalability, and ease of deployment. Its combination of sim-

plicity, low computational cost, and strong predictive performance makes it a practical choice for real-

time cloud computing contexts, particularly where transparency, reliability, and cost-effectiveness are 

as important as raw speed. 

6. Conclusions 

This study demonstrates that the effectiveness and responsiveness of cloud computing systems 

can be significantly enhanced through the use of an AI-based load balancing technique, specifically one 

driven by a decision tree regressor. By assigning matrix computation tasks in real time based on current 

server conditions, the proposed approach improves resource utilization, reduces task completion time, 

and minimizes network latency. These findings reinforce the value of integrating intelligent algorithms 

into modern parallel cloud environments to optimize performance. 

The primary contribution of this work is the development of a lightweight, data-driven load bal-

ancer capable of dynamically adapting to varying workloads and server conditions. This adaptive 

mechanism surpasses traditional static methods by improving fault tolerance, increasing throughput, 

and ensuring more reliable system behavior under real-time demands. The system’s ability to predict 

optimal server assignment based on live performance metrics confirms the potential of machine learn-

ing in building scalable and efficient distributed infrastructures. 

Despite these advantages, the study was limited by the scope of its testing, specifically the focus 

on matrix multiplication tasks and a fixed set of server configurations. Future research should explore 

the performance of alternative machine learning models, such as Random Forest, Gradient Boosting, 

and Support Vector Regression, to identify optimal trade-offs between accuracy, computational over-

head, and inference speed. Incorporating online or adaptive learning techniques could further enhance 

the model’s responsiveness to dynamic cloud conditions. Additionally, extending the application of 
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this method to other computational tasks beyond matrix multiplication would offer insights into its 

generalizability across diverse cloud-based workloads. 
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