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1. Introduction 
A complicated network is a network that exhibits irregular, non-trivial topological characteristics 

and is frequently encountered in real-world systems [1]. These networks exhibit complex connection 
structures between their parts that cannot be readily understood using simple mathematical models. 
Different types of real-life networks, such as biological interactions, information diffusion, and social 
dynamics, are complex networks. The main challenge in these networks is identifying the most influ-
ential nodes, which play a key role in applications such as viral marketing, epidemic control, and opin-
ion propagation. This challenge, known as influence maximization (IM), involves selecting a subset of 
nodes that can maximize the spread of information under a given diffusion model. However, IM is NP-
hard, making exact solutions computationally infeasible for large-scale networks [2]. 
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Abstract: Influence maximization involves selecting an optimal subset of 
nodes within a graph to activate as many nodes as possible in a network. This 
approach is categorized as non-polynomial time, and no specific algorithm is 
currently available to run efficiently within a reasonable time frame, especially 
for large-scale networks. Numerous methods have been introduced to resolve 
this challenge, including greedy algorithms, structural heuristics, and me-
taheuristic approaches. Although greedy algorithms and their improved ver-
sions achieve high accuracy, they often suffer from poor scalability and slow 
execution times on large graphs. In contrast, structural methods offer faster 
computation but at the cost of reduced accuracy. Metaheuristic algorithms, 
while promising, face difficulties in balancing speed and accuracy due to the 
expansive search space inherent in complex social networks. This study intro-
duces a novel method that leverages Q-learning, a reinforcement learning tech-
nique, to optimize influence maximization. The proposed method narrows 
down the search space by focusing on high-degree influential nodes. It dynam-
ically updates the Q-table by assigning rewards and penalties based on the 
nodes’ impact during influence propagation, modeled using the Independent 
Cascade framework. This approach effectively balances exploration and ex-
ploitation, enabling the identification of a highly influential seed set with im-
proved efficiency. Experiments conducted on various real-world datasets 
show that the Q-learning-based method significantly reduces execution time 
compared to genetic, particle swarm optimization, random, degree centrality, 
and K-shell algorithms while achieving higher influence spread in most cases. 
These results underscore the promise of reinforcement learning techniques in 
addressing complex network optimization problems such as influence maxi-
mization. 
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Greedy algorithms offer high accuracy but are computationally expensive and not scalable to large 
networks. Structural heuristics, such as degree centrality and k-shell decomposition, are efficient but 
often lack precision. Metaheuristic methods such as particle swarm optimization (PSO) attempt to bal-
ance speed and accuracy, yet they struggle with vast search spaces in complex networks. These limita-
tions underscore the need for a more adaptive, scalable, and learning-based solution—one that can 
overcome the uncertainty and dynamic nature of influence spread more effectively [1, 2]. 

To overcome these challenges, we propose a reinforcement learning-based solution using Q-learn-
ing. This method enables the agent to learn an optimal node election strategy by interacting with the 
environment, receiving feedback through the simulation of the independent cascade (IC) model. Unlike 
static heuristics, our approach can adapt over time and make informed, step-by-step decisions that 
maximize the long-term spread of influence. 

Q-learning is especially suitable for the IM challenge for a number of reasons. First, it is model-
free, meaning it can operate without a predefined mathematical model of the environment, which is 
ideal for influence spread, which is often uncertain. Second, it supports delayed rewards, aligning with 
the nature of IM, where the impact of a node may only become evident after several steps. Third, Q-
learning allows for reward-driven learning, where the effectiveness of each node can be evaluated 
based on actual diffusion outcomes. This enables the algorithm to refine its decisions over time. Finally, 
Q-learning balances exploration and exploitation, helping discover hidden combinations of influential 
nodes that simpler algorithms might overlook. 

We validated our approach using four real-world datasets representing diverse network types: an 
academic genealogy network of computer science PhDs, a scientific collaboration network, a semantic 
network from Roget’s Thesaurus, and a protein-protein interaction network. Our method was com-
pared against widely used baselines—random selection, degree centrality, k-shell, and PSO—based on 
influence spread and execution time. The contributions of this paper are as follows: 

• We introduced a novel approach relying on Q-learning to solve the influence maximization 
problem by optimizing the selection of influential nodes in social networks. This approach 
outperforms traditional algorithms by delivering faster execution and higher accuracy, mak-
ing it a more efficient and effective solution. 

• We reduced the search space by preprocessing the data to focus on high-degree nodes, which 
are more influential. This approach improves the overall efficiency of the algorithm. 

• The Q-table is dynamically updated using rewards and penalties based on each node’s influ-
ence in the diffusion process. In contrast, the IC model calculates the influence to adjust re-
wards in the learning algorithm. 

• The proposed method effectively balances exploration and exploitation, achieving a balanced 
trade-off between execution speed and accuracy in influence spread. 

• A comprehensive evaluation on multiple real-world datasets shows that the Q-learning 
method generally outperforms genetic algorithms, PSO, degree-based, and K-shell methods 
in both speed and effectiveness. 

• A sensitivity analysis on the activation threshold parameter identifies 0.1 as the optimal value 
for maximizing the algorithm’s performance. 

 
The remaining parts of this paper will include a review of recent advancements in influence max-

imization in social networks, as discussed in section 2.  Section 3 outlines the method we developed 
using Q-learning.  Section 4 introduces the datasets used in the paper, and section 5 examines the results 
and comparisons. Section 6 discusses our method in comparison to current algorithms and details its 
benefits. Ultimately, section 7 includes the summary and potential future projects. 

2. Related Works 
Social networks represent the relationships among individuals that enable the flow of information. 

Compared to traditional information dissemination methods, social networks offer a faster and more 
scalable environment for communication, which has led to the rise of viral marketing [3, 4]. 
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Influence Maximization (IM) is the problem of selecting a small subset of nodes in a network to 
maximize the spread of influence under a given propagation model. Two commonly used models in 
this domain are the IC and the linear threshold (LT) models. Kempe et al. [5] first demonstrated that IM 
under these models is NP-hard and proposed a basic greedy algorithm, the kernelized greedy algo-
rithm (KGA), to approximate a solution. Chen et al. [6] later improved this with the cost-effective lazy 
forward (CELF) optimization, which significantly reduces computation time while maintaining accu-
racy. Despite these advances, greedy algorithms are still computationally expensive for large-scale net-
works due to the repeated influence spread simulations. In one study, a greedy algorithm is proposed 
to solve the cost distribution under budget (CDB) problem in continuous influence maximization in 
social networks [7]. In each iteration, the algorithm calculates the influence increment of each node. It 
updates the cost distribution accordingly to find the optimal allocation that maximizes total influence 
within a given budget. Experimental results show that this method significantly improves expected 
influence spread. 

Metaheuristic algorithms, including genetic algorithms and PSO, offer a balance between speed 
and performance by more intelligently exploring the solution space than pure heuristics. However, 
they struggle with scalability as the network size and solution space grow [8]. 

To address this limitation, heuristic methods were introduced. These methods, such as degree 
centrality, k-shell decomposition, and degree discount, aim to approximate node influence using topo-
logical features [9-11]. While they are significantly faster, they generally sacrifice accuracy, especially 
in networks with complex structures or high clustering. For example, the community-based influence 
maximization algorithm – heuristic (CMIA-H) and the campaign-oblivious independent cascade model 
– out-arborescence (CMIA-O) are heuristic techniques that enhance scalability by focusing on positive 
seed selection [12]. 

Pruning-based techniques have also emerged, aiming to modify the network structure by remov-
ing or adding edges to control the flow of influence. These methods are still in early development but 
show promise for targeted influence control [12]. 

A more recent line of research focuses on fair and balanced influence maximization. Traditional 
IM approaches may result in biased outcomes, where only specific communities or user groups are 
exposed to information. Garimella et al. [13] and Becker et al. [14] introduced the concept of fair influ-
ence maximization (FIM), proposing algorithms to ensure equitable information exposure. Subsequent 
studies have proposed models such as CEA-FIM and BIM-DRL, which incorporate community struc-
ture and deep reinforcement learning to achieve fairness while maintaining efficiency [15, 16]. 

Competitive opinion maximization seeks to select influential seed nodes in social networks to 
spread favorable opinions in the presence of competitors. This paper introduces a Q-learning-based 
framework (QOMF) that models dynamic opinion changes and unknown competitor strategies using 
a multistage seeding process. Experiments show that QOMF significantly outperforms existing meth-
ods in maximizing relative effective opinions [17]. With the advent of deep learning and graph repre-
sentation techniques, reinforcement learning (RL) has emerged as a potent method for IM. RL-based 
models such as S2V-DQN and graph combinatorial optimization (GCOMB) utilize graph embeddings 
to represent node features and learn optimal seed selection strategies through trial and error [18]. These 
methods can adapt to dynamic network changes and model uncertainty in influence propagation. 
CoreQ, for example, addresses the scalability challenge by using a k-core hierarchy to limit the search 
space, while learning influence overlap and structure-aware policies [19]. 

Another RL-based approach introduces new metrics such as connectivity strength and effective 
distance, which analyze both local and global structural contributions. This method aggregates multi-
hop neighborhood information and significantly improves the accuracy of identifying influential nodes 
[20]. 

Finally, online influence maximization methods have emerged to deal with evolving social net-
works. These techniques estimate edge activation probabilities in real-time and dynamically update 
seed node selection strategies using feedback from the environment. Deep RL (DRL) is beneficial in this 
context due to its ability to learn optimal policies without requiring complete knowledge of network 
dynamics [21]. In one study, the authors introduced a framework called budgeted influence 
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maximization using deep reinforcement learning (BIM-DRL), which leverages deep reinforcement 
learning to address the challenge of balanced influence maximization in social networks [22]. The goal 
of this approach is to prevent the formation of filter bubbles and echo chambers through balanced seed 
node selection and consideration of entity correlations. The novelty of another study lies in proposing 
a DRL-based model with transfer learning to address competitive influence maximization on unknown 
social networks by jointly learning when to explore the network and how to select influential seed 
nodes optimally [23]. The authors of another work proposed a novel propagation model and designed 
a new algorithm that captures these dynamics, outperforming existing methods in both performance, 
time complexity [24], and memory [25], 

One study introduced a dual coupled graph neural network for seed selection in social networks, 
which intelligently extracts node information by combining deep reinforcement learning and graph 
neural networks, and selects the optimal strategy to maximize the influence spread. Another proposed 
method involves a new model called novel influence network embedding (NINE) for network repre-
sentation, as well as the NINE influence maximization algorithm for seed selection, which accurately 
models the diffusion behavior and social influence of nodes [26]. The innovation introduced in another 
article includes a voting-based influence maximization method where nodes with different degrees 
have distinct voting powers, and the influence of 2-hop neighbors is discounted to reduce overlap. It 
also enhances efficiency by only updating the voting scores of nodes whose scores may change, avoid-
ing unnecessary calculations [27]. 

The novelty of this paper lies in introducing a cross-layer IC model to capture inter-layer infor-
mation propagation in multilayer social networks. It also proposes an algorithm that integrates differ-
ential evolution with deep reinforcement learning and multilayer network embedding to identify the 
optimal seed set more effectively [28]. 

In summary, while classical algorithms provide foundational techniques for influence maximiza-
tion, recent developments in reinforcement learning and fairness-aware models have expanded the ca-
pabilities of IM methods to handle large, complex, and dynamic. Table 1 briefly presents the existing 
studies in this field, the problems addressed, and the proposed solutions. 
 

 Table 1: Summary of influence maximization research. 
Paper 
No. Topic Method / Model Summary 

[3] Viral marketing Social networks 
Faster and more scalable medium for information dis-

semination compared to traditional methods. 

[5] 
Influence maximization 

(IM) 
IC & LT models + greedy 

algorithm (KGA) 
IM is NP-hard; a basic greedy algorithm was proposed 

to approximate the solution. 

[6] 
Improved greedy algo-

rithm 
CELF 

Significantly reduces computation time while main-
taining accuracy. 

[7] 
Continuous influence 

maximization 
Greedy algorithm for 

CDB 
Optimizes budget allocation by computing influence 

increment per iteration. 

[8, 9, 10] Heuristic methods 
Degree centrality, K-shell, 

degree discount 
Faster but less accurate in complex or highly clustered 

networks. 

[11] Metaheuristic algo-
rithms 

Genetic algorithms, PSO Balance speed and performance, but face scalability is-
sues. 

[12] 
Pruning & scalable tech-

niques 
CMIA-H, CMIA-O 

Control influence flow by modifying network struc-
ture; focus on positive seed selection. 

[13, 14] 
Fair influence maximiza-

tion (FIM) 
Fair algorithms 

Ensure equitable exposure of information across com-
munities. 

[15, 16] Advanced FIM models CEA-FIM, BIM-DRL 
Incorporate community structure and deep RL to en-

sure fairness and efficiency. 

[17] 
Competitive opinion 

maximization 
QOMF (Q-learning) 

Model dynamic opinions and competitor strategies us-
ing multi-stage seeding. 

[18] 
Reinforcement learning 

in IM 
S2V-DQN, GCOMB 

Use graph embeddings and RL to learn optimal seed 
selection strategies. 

[19] Scalability in RL CoreQ 
Uses the K-core hierarchy to limit the search space and 

learn efficient policies. 
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Table 1: continue 

[20] Accuracy in RL IC-SNI 
Introduces connectivity strength and effective distance 

metrics for better node identification. 

[21] 
Online influence maxi-

mization 
Deep RL 

Learns optimal seed strategies in dynamic networks 
using real-time feedback. 

[22] Influence maximization Deep RL 
Preventing the formation of filter bubbles and echo 
chambers through balanced seed node selection and 

consideration of entity correlations. 

[23] Influence maximization Deep RL 
Proposing a DRL-based model with transfer learning 
to address competitive influence maximization on so-

cial networks 

[24] Influence maximization Deep RL 

Proposing a novel propagation model and designing a 
new algorithm that captures these dynamics, outper-
forming existing methods in both performance and 

time complexity. 

[25] Influence maximization Deep RL 

Proposing methods, including a new model called 
Novel Influence Network Embedding for network rep-
resentation and the NINE Influence Maximization al-

gorithm for seed selection 

[26] Influence maximization Deep RL 
Introducing a Dual Coupled Graph Neural Network 

(DGN) for seed selection in social networks 

[27] Influence maximization 
Voting-based influence 

maximization 

Voting-based influence maximization method where 
nodes with different degrees have distinct voting pow-
ers, and the influence of 2-hop neighbors is discounted 

to reduce overlap 

3. Material and Methods 
In the problem of maximizing influence, the search space is extensive, as the goal is to select the 

optimal subset of network nodes to initiate the spread process. Considering all network nodes in the 
search space would slow down the algorithm and reduce its accuracy; a few nodes are connected to 
multiple others, whereas a small portion of nodes with high centrality have connections to many others 
and can greatly impact information spread in the network [29]. Given these characteristics, the pro-
posed method preprocesses the problem space by narrowing it down to a reduced group of highly 
impactful nodes, where the optimization occurs. Due to the intricate structure of these networks, the 
Q-learning algorithm is employed to address the issue of influence spread optimization. Figure 1 shows 
the flowchart of the proposed method. 
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Figure 1: The flowchart of the proposed approach. 

3.1. Formulation of the Problem 
The social network graph input is a directed graph represented as G = (V, E), with V being the 

network entities set, and E representing the directed edges showing relationships between the entities. 
A directed edge eij ∈ E going from node vi to node vj indicates that vi has an influence on vj. According 

No 
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to Equation 1, the goal is to find a subset S of network nodes that can activate the most nodes using the 
IC propagation model [12]. 

 

𝜎𝜎(𝑆𝑆∗) = max{ 𝜎𝜎(𝑆𝑆)}                                                       (1)
𝑆𝑆 ⊆ 𝑉𝑉                                                                 

 

The IC propagation model is employed for the function σ(.), assigning a nonnegative real number 
to each subset S to show its propagation potential [30]. In the linear threshold model, the algorithm 
computes the spread of influence in a social network as follows: 

Inputs: The graph G (V, E, W), where V is the set of nodes, E is the set of edges, and W represents 
edge weights indicating the influence between nodes. Additionally, the seed set S and the thresholds 
𝜃𝜃𝑣𝑣For each node, the information is provided. 

• Initially, set k=0, and the initial set of influenced nodes ϕ(t0) is assigned to the seed set S. In 
this step, the seed nodes are influenced by default. 

• The algorithm then enters an iterative loop, continuing until the influenced set ϕ(tk) is no 
longer empty. 

• In each iteration, k is incremented by 1, and the set ϕ(tk) is reset to an empty set. 
• The algorithm proceeds by considering all nodes v not in ϕ(tk−1). For each node v, it computes 

the fraction of its neighbors that are influenced (i.e., belong to ϕ(tk−1)). 
• The fraction of influenced neighbors is computed by counting the number of neighbors of 

node v that have already been influenced, and dividing that by the total number of neighbors. 
If this fraction exceeds the threshold θv of node v, then node v is added to the set of influenced 
nodes for this iteration, ϕ(tk). 

• This process continues for all nodes, updating the set of influenced nodes in each iteration. 
• Once the process terminates, the total spread of influence is computed as 𝝓𝝓(𝒕𝒕𝒌𝒌) = ⋃ 𝝓𝝓�𝒕𝒕𝒋𝒋�𝒌𝒌

𝒋𝒋=𝟎𝟎 , 
representing the union of all influenced nodes across iterations. 

• The final output is the size of the influence spread ∣ϕ(k)∣, which gives the total number of 
influenced nodes. 

3.2.  Computation of the Q-table 
The issue is resolved by utilizing the Q-learning algorithm for the method being suggested. To 

achieve this goal, the issue of IM is transformed into one that can be addressed with this algorithm. RL 
represents a machine learning technique where an agent gains experience by engaging with its sur-
roundings, receiving feedback through trial and error. In supervised learning and reinforcement learn-
ing, there is an emphasis on linking input and output variables.  Nevertheless, in reinforcement learn-
ing, rewards and punishments serve as indicators of good and bad conduct, as they guide the agent 
towards the appropriate actions needed to carry out a task, in contrast to supervised learning. Q-learn-
ing is a reinforcement learning method that aims to determine a specific policy by acquiring knowledge 
of an action-value function, thereby adapting actions according to varying circumstances. One ad-
vantage of this approach is that the function mentioned earlier can be acquired without requiring a 
predetermined environment model. 

One significant alteration in Q-learning when applied to tackle the influence maximization issue 
relates to the manner in which the Q-table is generated and its quality. In this table, the options chosen 
by the core members determine the content of the columns, while the rows represent the various states. 
Each cell contains the highest anticipated future reward for the specific state and action. For instance, 
a group of nodes (81, 17, 19, 1, 8) with elevated degrees is given as the starting choices. Next, the selec-
tion of potential members for the starting core determines the preferred solutions. Figure 2 displays an 
example of the agent search technique when analyzing various states to choose the initial core mem-
bers. 
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Figure 2: Agent search method in the examined states (various seed set choices). 

Every score in the Q-table represents the anticipated reward the agent will receive when following 
the best policy and taking a specific action. The Q-table functions similarly to a poker game, where the 
agent determines the optimal action by looking at the highest score in each row corresponding to each 
state. Afterwards, the calculation of the value for every Q-table element is performed. The Q-function, 
also called the action-value function, receives the state and action as input and provides the expected 
future reward for the given state and action (according to the Bellman equation). 

                                      NewQ(s,a) = Q(s,a) + α[R(s,a) + γmaxQ’(S’,a’) – Q(s,a)]             (2) 

 

 

 

 
In the proposed method, each state (selected initial core) is sent to the evaluation function for each 

action chosen, and the propagation values are computed by the evaluation function, i.e., the IC propa-
gation model. Throughout this study, the calculated values of positive influence spread are used as the 
evaluation function. 

3.3. Detailed Steps of the Proposed Method 

• The problem input involves a social network G = (V, E, W), where V is the set of nodes, E is 
the set of edges, and W is the set of edge weights, which represent the influence of each node 
on the others. The weights are numbers between 0 and 1, with a larger number indicating 
greater influence.  

• Given the large size of the graph of the problem, preprocessing takes place in this step. For 
that purpose, nodes of higher degrees are selected from among the graph nodes as candidates 
for membership in the initial core or seed set S.  

• The initial population is generated, where nodes are selected from among those of degrees 
higher than or equal to the threshold, to be placed in the initial core or seed set S. For the 
generation of the initial population, a Boolean vector 𝑩𝑩 = (𝒃𝒃𝟏𝟏,⋯ ,𝒃𝒃𝑵𝑵), 𝒃𝒃𝒊𝒊 ∈ {𝟎𝟎,𝟏𝟏} ∶  𝒃𝒃𝒊𝒊 = 𝟏𝟏 ↔
𝒗𝒗𝒊𝒊 ∈ 𝑺𝑺 is used to decide on the selection of the nodes for membership in the initial core.  

• The Q-table is initialized, where different states of seed set member selection specify the se-
lected solutions. The presence or absence of the nodes in the initial core makes up the columns 
of the Q-table, and the seed sets (initial cores) constitute the rows.  

• A state in the Q-table is selected as the current state.  
• An action a is selected in the current state.  

New Q-Value for 
state and action 

Current 
Q-value 

 
Learning 

Rate 

Reward 
for action 

Discount 
Rate 

Minimum predicted reward 
regard to new s’ and all 
possible actions in state 
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• Experience is gained as the action selected by each state (seed set chosen) is sent to the eval-
uation function, by which propagation is computed (observation of the output state s and 
reward).  

• The Q-table is subsequently updated with the new reward and penalty values using the Bell-
man equation to update Q (s, r). If the optimal solution is identified, the algorithm proceeds 
to the final step (End); otherwise, it returns to step 3.  

• End 

3.4. Datasets 
To evaluate the proposed method, four publicly available datasets consisting of directed weighted 

graphs were selected. These datasets are extracted from real-world data and have been extensively used 
in prior research. The datasets include: 

• CSphd-genealogy: genealogical data of computer science PhDs. 
• Netscience-collaboration: a network of scientists collaborating on network theory. 
• Roget-dictionary: derived from Roget.net, based on the roget.dat file from the Stanford 

GraphBase, containing cross-references found in Roget's Thesaurus. 
• YST: a protein-protein interaction network constructed by V. Batagelj. 

A summary of the key statistics of these datasets is shown in table 2. 
  

Table 2: Dataset characteristics used for evaluation. 

Dataset Number of Nodes Number of Edges Average Degree Max Degree Min Degree 

CSphd-genealogy 1882 1740 1.85 46 1 
Netscience-collaboration 1461 2742 3.75 34 1 

Roget-dictionary 1010 3649 7.23 28 1 
YST 2361 7182 6.08 66 1 

 

4. Results 
The proposed approach is evaluated using the following criteria: 
• Influence Spread: The node count activated by the selected seed set members. Higher values 

indicate better performance. 
• Time Efficiency: The total runtime from the start of seed selection to the completion of 

propagation. This reflects how quickly the method selects the seed set. 
• Sensitivity Analysis: The activation threshold was varied to assess robustness. The optimal 

threshold value was found to be 0.1. 
• Comparison with Other Methods: The method was tested against cutting-edge solution 

algorithms, including community-based shell decomposition , centrality-based methods, 
moment of influence and recommendation random node, discrete particle swarm 
optimization , and dynamic generalized genetic algorithms . 

As shown in figures 3 and 4, in the YST.csv dataset, which represents a complex network with an 
asymmetric node structure, AI-based methods such as Q-Learning and PSO have demonstrated signif-
icantly better performance in identifying key nodes for influence propagation, activating more than 750 
nodes. In contrast, simpler methods, such as random or K-Shell, activated fewer than 100 nodes. Alt-
hough PSO achieved the highest activation count, its relatively long execution time makes it less effi-
cient compared to Q-Learning, which required minimal processing time. Therefore, considering the 
properties of the network and the level of influence spread, Q-Learning is the most suitable choice, as 
it provides performance close to PSO with a much lower execution time, indicating its effectiveness in 
accurately identifying strategically essential nodes. 
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Figure 3: Comparison of active nodes with the YST dataset and different algorithm. 

 

 
Figure 4: Comparison of execution time with the YST dataset and different algorithm. 

 
In the Roget.csv dataset, various methods, including Q-Learning, Genetic Algorithm, PSO, and 

random activation, produced a similar number of active nodes, approximately 600. This suggests that 
the network structure may permit significant influence from numerous seed selections. However, PSO, 
despite having the highest activation (about 610 nodes), requires a significantly higher execution time 
(around 20 seconds), making it less efficient. In contrast, Q-Learning and genetic algorithm provide 
nearly the same level of influence spread with much lower execution times, offering better perfor-
mance-efficiency trade-offs. Methods such as Degree Centrality and K-Shell activated far fewer nodes 
(110 and 90, respectively), showing limited effectiveness. Therefore, considering both effectiveness and 
execution time, Q-Learning emerges as the most balanced and efficient method for this dataset. This is 
clearly illustrated in figures 5 and 6. 
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                       Figure 5: Comparison of active nodes with the Roget dataset and different algorithm. 

 
Figure 6:  Comparison of execution time with the Roget dataset and different algorithm. 

 
In the CSphd.csv dataset, which represents an academic network with a relatively limited struc-

ture and few key nodes, the Q-Learning method outperforms others by activating around 30 nodes. 
While PSO ranked second with approximately 23 activated nodes, its execution time was significantly 
higher (around 35 seconds), making it less efficient. Other methods, such as genetic algorithm, random, 
degree centrality, and K-Shell, activated fewer than 15 nodes, indicating low effectiveness in this type 
of network. Therefore, considering both the higher number of activated nodes and the much shorter 
execution time, Q-Learning can be considered as the most effective choice for this dataset, demonstrat-
ing strong capability in identifying strategic nodes even in small and specialized networks. This is il-
lustrated in figures 7 and 8. 
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                Figure 7: Comparison of active nodes with CSphd dataset and different algorithm. 

 

 

                      Figure 8: Comparison of the execution time with the CSphd dataset and different algorithms. 

 

Figures 9 and 10 illustrate the results of applying different methods to the Netscience.csv dataset. 
The Degree Centrality method achieved the highest influence among all methods by activating approx-
imately 198 nodes, while its execution time remained minimal. Although AI-based methods such as Q-
Learning (with approximately 120 activated nodes) and PSO (with approximately 103 activated nodes) 
also showed relatively good performance, especially in the case of PSO, the high execution time (around 
26 seconds) reduced their efficiency compared to faster methods. Therefore, in this particular network, 
Degree Centrality is identified as the most effective method, as it achieved the highest spread with 
minimal computational cost and without requiring complex calculations. 

In the Netscience.csv dataset, the network appears to have a centralized structure or a skewed 
degree distribution, indicating that a limited set of nodes possessed an extremely high degree (number 
of connections), and these nodes play a crucial role in information diffusion or influence. In such net-
works, degree centrality performs well, as it selects explicitly these high-degree nodes as key influenc-
ers. In datasets like CSphd or YST, where the network structure may be more sparse, symmetric, or 
multi-centered, node degree is not always a dependable indicator of influence. Therefore, degree cen-
trality cannot perform effectively in those cases. 
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      Figure 9: Comparison of active nodes with Netscience dataset and different algorithm. 

 

Figure 10: Comparison of the execution time with the Netscience  and dataset different algorithms. 

The results indicated that the proposed Q-learning algorithm outperformed other methods in most 
cases. The Q-learning method consistently achieved a higher influence spread. The degree centrality 
method performed similarly in the YST dataset, possibly due to the network's higher average degree. 
Still, Q-learning generally leads in other datasets such as Netscience and CSphd. Heuristic algorithms, 
such as random and degree centrality, have the lowest execution times but lower influence spread. 
Metaheuristic approaches such as PSO and Genetic Algorithms require significantly more time due to 
extensive search processes. The proposed Q-learning method offers a balance with moderate runtime 
and superior effectiveness. 

5. Discussion 
The results indicated that the Q-learning algorithm effectively balanced maximizing influence 

spread with maintaining computational efficiency. In datasets with complex structures and lower av-
erage degrees, simpler algorithms tend to underperform, whereas Q-learning leverages reinforcement 
learning to adaptively improve seed selection. Sensitivity analysis confirmed that setting the activation 
threshold to 0.1 optimizes performance across all tested datasets, underscoring the importance of pa-
rameter tuning. 

In summary, the proposed method shows a competitive advantage over existing approaches by 
achieving a higher influence spread without significantly increasing runtime, making it a compelling 
strategy for influence maximization in social networks. We proposed a novel approach based on Q-
learning to solve the IM problem in large-scale social networks. Our approach effectively addressed the 
challenge of selecting an optimal seed set to maximize influence spread. By leveraging reinforcement 
learning, the approach dynamically updates the Q-table based on feedback from the network 
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propagation process. We demonstrated that by preprocessing the data to focus on high-degree nodes 
and utilizing the IC model, the Q-learning algorithm achieved both high accuracy and efficiency. The 
results from our experiments across various real-world datasets, such as CSphd-genealogy and 
Netscience-collaboration, showed that our method can consistently outperform traditional algorithms, 
such as degree centrality and PSO, in terms of influence spread while maintaining a reasonable execu-
tion time. Our approach offers significant advantages in both scalability and effectiveness, addressing 
the limitations of existing techniques. Unlike greedy or structural heuristics, which face scalability or 
accuracy issues, the Q-learning algorithm effectively balances exploration and exploitation, allowing it 
to adaptively identify the most influential nodes over time. Furthermore, through sensitivity analysis, 
we identified the optimal activation threshold to maximize performance, highlighting the importance 
of parameter tuning in real-world applications. The proposed method has the potential to be employed 
in multiple areas, like viral marketing, epidemic control, and opinion dynamics, where influence spread 
is a critical factor. 

Looking ahead, several avenues for future work can further improve the proposed approach. To 
further develop and enhance the reinforcement learning method proposed in this paper, several 
measures can be taken in future research. A hybrid structural-content method can be presented for the 
selection of the initial core members. Given that influence is a relative notion, depending totally on 
content, the suggested reinforcement learning technique can also utilize contextual data. The proposed 
reinforcement learning approach can be assessed using different propagation models. For instance, the 
dependent cascade model can be used instead of the IC method, as the former considers the earlier 
efforts made by the nodes to activate their neighbors, unlike the latter. One potential direction is the 
integration of DRL techniques to improve the model's capacity to manage larger, more complex net-
works by learning richer, more abstract representations of influence propagation. Additionally, explor-
ing hybrid approaches that combine Q-learning with other optimization techniques, such as genetic 
algorithms [31-33] or particle swarm optimization [34, 35], may lead to even more efficient and scalable 
solutions. Another interesting extension would be to incorporate temporal dynamics into the model, 
where the influence spread might vary over time, reflecting the evolving nature of social networks. 
Such advancements could make the approach more adaptable to real-time network environments, fur-
ther enhancing its practical applicability. 

6. Conclusions 
In this study, a novel Q-learning-based algorithm was proposed to address the influence maximi-

zation problem in large-scale social networks. Experiments on real-world datasets such as CSphd, 
Netscience, and YST demonstrated that this method outperforms common algorithms like PSO and 
Degree Centrality in terms of influence spread while maintaining lower execution times. This balance 
between accuracy and efficiency makes the algorithm a suitable choice for applications such as viral 
marketing, epidemic control, and social dynamics analysis. Despite these successes, future improve-
ments—such as integrating advanced propagation models and employing deep reinforcement learn-
ing—could further enhance the scalability and accuracy of the approach. 
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