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1. Introduction 
The evolution of enterprise-class networks has brought more challenges due to the complexities 

and performance requirements, making it vital to provide real-time responsiveness and fault tolerance 
in such environments. To operate such networks, routing protocols such as Open Shortest Path First 
(OSPF) will be used to provide routing services and efficiently make routing decisions. OSPF is a link-
state protocol that mostly relies on bandwidth as the primary cost metric to select a forwarding path 
[1-4]. Optimizing OSPF path selection can, however, cause issues due to traditional OSPF metric base-
lines, which are limited [5]. Several routing protocols, including OSPF, use algorithms such as Dijkstra’s 
algorithm to find the best path to the destination. However, even though OSPF is successful in the static 
context of metrics and path selections, it cannot dynamically adjust parameters to provide improve-
ments in latency, link failure, and congestion [2]. Therefore, routing optimization is a crucial study 
domain to enhance the overall performance of network routing [4-7].  
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Abstract: At the core of enterprise networks lies routing protocols that make 
forwarding decisions based on a set of rules and metrics. One of the most pop-
ular and widely used routing protocols is the Open Shortest Path First (OSPF). 
Traditional OSPF calculates the cost of the route primarily based on interface 
bandwidth, without considering real-time factors such as latency, congestion, 
or link stability. These calculations are static and can lead to deficiencies in 
adapting to unstable network conditions. This study proposes the integration 
of multiple machine learning (ML) models and techniques to enhance OSPF 
routing decisions. Four important ML functions namely traffic forecast, anom-
aly detection, failure prediction, and dynamic cost optimization—have been 
used to improve OSPF performance. ML methods such as Random Forest and 
XGBoost are used to predict and assign costs in traffic utilization and real-time 
performance assessments. AutoRegressive Integrated Moving Average mod-
els and Long Short-Term Memory are applied to enable traffic predictions and 
route adjustments before potential congestions. Furthermore, link and node 
failure are common in network routing. Random Forest and logistic regression 
models are employed to predict these. The simulation took place in Graphical 
Network Simulator-3 using Cisco routers and Linux servers to allow thorough 
testing before and after applying the ML models. The results and findings have 
shown that the integration of ML models reroutes the traffic to enhance latency 
and throughput by approximately 30%. The findings demonstrate the upside 
of ML-enhanced OSPF routing as a versatile and scalable solution for high-
demand networks. 
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Software-defined networking (SDN) is one of the recent network advancements that separates 
control and management planes to enable intelligent deployment through application programming 
interfaces (APIs). While traditional networks struggle with static sets of metrics, SDN is an effective 
way to apply new, adapted programming techniques to enhance performance. SDN uses network au-
tomation tools to orchestrate network operations to provide smart, programmable, and automated ar-
chitectures [4, 5]. Ansible is a popular automation and configuration management tool that can apply 
SDN tasks through APIs. Using these programmability advancements enables the application of ma-
chine learning (ML) models for traffic predictions and management [8-11].  

To overcome the challenges of static metric routing, this research aims to integrate an ML model 
into OSPF routing decisions, proposing that predicting traffic and adapting to environmental changes 
will enhance the overall performance of the network. Real-time networks can reach peak performance 
if they overcome the challenge caused by latency, packet loss, and congestion. Thus, training ML mod-
els to predict and influence OSPF routing decisions can be crucial to provide better performance. This 
study focuses on four main goals for the ML models to train upon [12]. To optimize cost dynamically, 
ML models are being used, and the most common techniques are Random Forest and XGBoost regres-
sion models. The setup system will analyze real-time collected performance data to assign OSPF cost 
dynamically instead of using traditional static metrics. Hence, accurate reflections of the network state 
will lead to better path calculations by the routing protocol [13]. Then, the collected traffic data will be 
used by time-series models such as Long Short-Term Memory (LSTM) and AutoRegressive Integrated 
Moving Average (ARIMA) to train and predict patterns. These data will eventually forecast potential 
future congestions that could impact the overall network performance [10, 11].  

Furthermore, routing protocols such as OSPF are well-known for link flapping and failures in 
large-scale congested networks. Therefore, identifying these issues is crucial to the network perfor-
mance [14-16]. ML unsupervised methods such as Isolation Forest and Autoencoders can be used to 
identify anomalies in routed traffic flows, and these models will flag any possible real-time problems 
by finding anomalies such as packet loss, jitter, or latency variations. Finally, Random Forest and lo-
gistic regression classifiers will be employed to forecast possible link or node failures depending on 
patterns in collected network behavior data and performance degradation indicators. The study also 
investigated the resilience and reliability of the network in order to improve overall performance.  

Using Graphical Network Simulator-3 (GNS3), the experimental environment simulation is set to 
include a network of 10 Cisco routers linked together to create a feasible topology. End-to-end tests 
across all router pairs (e.g., from R1 to R10) captured crucial data including latency, real OSPF cost, and 
link usage. Enhancing resource allocation and routing to meet service requirements is essential in ex-
tensive networks. A structured simulation will examine each of these ML-driven methods, with thor-
ough test cases logged in a centralized table. With ML-predicted OSPF costs closely matching real-
world behavior and consistently overcoming static OSPF metrics in dynamically changing environ-
ments, the findings will reveal significant improvements in routing performance [10, 11]. By enabling 
the system to reroute traffic before performance declines, traffic forecasting models correctly predict 
congestion patterns. Anomaly detection and failure prediction also give warnings promptly of possible 
problems, thereby raising the fault tolerance of the network.  

This work proposes the integration of ML models in OSPF path selection, enhancing the decision-
making of routing based on real network status. It designs and evaluates a multi-model approach to 
optimize cost functions, predict traffic patterns, detect anomalies, and predict failures. The contribution 
also includes developing and simulating a testbed constructed on top of GNS3 with automated data 
collection and dynamic configuration using Python and Ansible, with measurable enhancements in 
latency, throughput, and path reliability. 

The layout of this paper is represented as follows. Section 2 reviews the existing contemporary 
related works. Section 3 outlines the methodology employed in applying the ML models within the 
traditional network structure. Section 4 presents the results of the simulations, followed by a discussion 
in section 5 that describes the findings. Finally, section 6 concludes the paper. 
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2. Related Works 

As network scale grows, the allocation of network resources has become increasingly critical. The 
close interconnection between the control plane and data plane in conventional network design pre-
vents routing algorithms from acquiring network status information from a comprehensive viewpoint 
and subsequently planning forwarding routes accordingly. This may lead to diminished network uti-
lization and significant congestion in extensive scenarios. SDN presents an innovative methodology 
that employs a programmable control plane to dictate the forwarding of various data flows. The net-
work's control logic is then conveyed from delivery devices, such as routers and switches, to software 
controllers, effectively separating the data plane from the control plane and streamlining network man-
agement [15]. Wei et al. [17] propose HEATE, an algorithm combining traditional OSPF optimization 
with SDN flow adjustments to enhance energy efficiency. Their model dynamically reallocates traffic 
across links to reduce power consumption while maintaining network performance. Furthermore, an 
ML-driven SDN network might overcome greater challenges faced in time-sensitive massive network 
topologies.  

Caria and Jukan [18] investigate how to configure link weights in hybrid SDN/OSPF networks to 
support fault-tolerant operations. Their work proposes mathematical models to balance capacity plan-
ning, reduce overprovisioning, and ensure service continuity under failure conditions. Caria et al. [19] 
introduce a hybrid networking strategy where SDN controllers partition OSPF domains into multiple 
sub-domains. This setup enables centralized fine-grained control of routing paths while preserving 
OSPF’s decentralized nature, improving routing flexibility and manageability. Networking trends sug-
gest using ML for many network optimization tasks. Extensive efforts have been made to develop ML-
based solutions for traffic engineering (TE), a major issue in internet service provider networks. Modern 
TE optimizers use local search, constraint programming, and linear programming. Multi-Agent Rein-
forcement Learning and Graph Neural Networks for Distributed TE Optimization (MAGNNETO), is a 
distributed ML-based system for distributed TE optimization, uses multi-agent reinforcement learning 
and graph neural networks (GNN). MAGNNETO distributes agents across the network that learn and 
communicate via message exchanges. This framework optimizes link weights in OSPF to reduce net-
work congestion. MAGNNETO is evaluated against three leading TE optimizers in over 75 topologies 
with actual traffic volumes and experiments reveal that MAGNNETO executes faster than state-of-the-
art TE optimizers due to its distributed nature. The ML-based approach also generalizes well to novel 
networks uncovered during training [1].  

A significant trajectory has emerged in the utilization of intelligence-based routing within pro-
grammable networks, especially over the past decade; nonetheless, considerable effort remains neces-
sary to attain thorough comparisons and synergies of methodologies, as well as substantive evaluations 
grounded in available datasets and topologies, along with comprehensive practical implementations 
that might be used by industry [20]. The articles addressed examine the application of ML approaches 
for routing optimization in software-defined networking, categorized into three primary types: super-
vised learning, unsupervised learning, and reinforcement learning. This survey provides comprehen-
sive summary tables pertaining to these investigations, and a comparative analysis is also addressed, 
giving an overview of the most exemplary works based on their evaluation [20]. 

Chen et al. [15] formulated the optimization target for load balancing within the network and pre-
sented an enhanced population initialization approach that utilizes explicit data regarding network 
environmental variables to expedite algorithm convergence. Furthermore, an exploration phase was 
implemented to augment the algorithm's development and enhance its efficacy. Ultimately, they con-
ducted simulation experiments utilizing three network topologies and two traffic intensities, evaluating 
their suggested model in comparison to OSPF and the original algorithms. The findings and results 
highlight that better adaptability and metric values can be gained using the proposed model. Therefore, 
the application of the model enhanced the overall load-balancing efficiency. 

Deep learning is an effective way of using ML for enhancing enterprise network performance. 
Abrol et al. [21] conducted research on the use of deep reinforcement learning (DRL) methods for adap-
tive routing. They successfully developed a Deep Graph Convolutional Neural Network for the DRL 
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framework to analyze traffic behaviors and link failures. The proposed approach utilizes q-value esti-
mates for path selection for each traffic flow request. Various experiments were conducted on the traffic 
patterns while using the deep learning approach and then compared to the traditional OSPF methods. 
The experimental results have shown that the proposed framework provides better latency, through-
put, and adaptability compared to the conventional routing protocol. 

Wireless mesh networks are popular for their low cost, quick transmission time, simple setup, and 
flexibility. Though older routers may follow set rules even when superior routes are available, routing 
algorithms are vital in defining data paths between nodes. This study suggests adopting the QL-Feed 
Forward Routing (QFFR) algorithm to solve this problem; it uses Q-learning and a feed forward neural 
network to allow smart, adaptive routing choices. By means of the network environment, QFFR chooses 
the most efficient path, thereby enhancing routing performance. Using measures such as throughput, 
packet delivery ratio, and delay, this contrasts QFFR with conventional algorithms. Results indicate 
that the proposed algorithm is best in delay and throughput [22]. Pan et al. [23] presented a novel 
method using inverse coupled simulated annealing to optimize OSPF route convergence in IoT net-
works and addressed issues like slow fault recovery and dynamic topology instability by enhancing 
convergence speed and reliability through metaheuristic optimization. 

Enabling smarter, more autonomous, and user-centric systems, ML is poised to play a key role in 
5G self-organizing networks (SONs). The User Specific-Optimal Capacity Shortest Path (US-OCSP) 
routing technique presented in this paper finds the optimal route between a source and destination 
using ML depending on node capacity and distance. Q-learning is used to prevent congestion and 
guarantee the best throughput by means of simulations evaluating available network resources. In 5G 
SON settings, the method improves user experience and supports efficient resource allocation [24]. 
Moreover, traditional management techniques fall behind the data volume and device diversity as 6G 
networks expand. The Speed-optimized LSTM (SP-LSTM) model, which combines predictive analytics 
with dynamic routing, is a new ML-driven solution offered in this paper [25]. Fast congestion prediction 
is provided by SP-LSTM, while adaptive routing is provided by reinforcement learning in the two-
tiered system. This proactive, learning-based strategy satisfies 6G requirements for ultra-low latency, 
high dependability, and effective resource use. SP-LSTM's rapid training and prediction show the 
strength of ML to surpass conventional methods in next-gen network management, making it perfect 
for dynamic settings [25].  

Çoğay et al. [26] proposed a QoS-aware dynamic routing framework for edge routers, using ML 
methods such as XGBoost and Random Forest to classify network packets and employing a multi-path 
routing approach to dynamically adapt to changing network conditions. The framework consisted of 
three main modules: a packet classifier, a load balancer, and a routing engine. The packet classifier 
classified internet packets using ML and the load balancer marked flows based on priority levels and 
analyzed link loads to prevent congestion. The routing engine selected the optimal paths based on these 
analyses, ensuring efficient data transfer with optimized routing cost. In the evaluation phase, the 
packet classifier used pre-trained ensemble learning methods. Based on the classification results, the 
introduced ML-based framework achieved better throughput than traditional OSPF. 

Although earlier research has provided important contributions to the field by optimizing OSPF 
and general network routing using deep reinforcement learning and graph-based models, this study 
stands out for its thorough integration of multiple ML models across other network functions. In con-
trast to methods that only adjust link weights or that only use reinforcement learning frameworks, this 
research addresses dynamic cost optimization, traffic prediction, anomaly detection, and failure fore-
casting at the same time by combining supervised learning (XGBoost, Random Forest), time-series fore-
casting (LSTM, ARIMA), and unsupervised learning (Isolation Forest, Autoencoders). Additionally, a 
more grounded, testbed-driven evaluation is made possible by the use of a realistic GNS3-based simu-
lation with Cisco routers and live metric collection using Simple Network Management Protocol 
(SNMP), NetFlow, Internet Control Message Protocol (ICMP), and syslog. A multilayered improve-
ment to OSPF routing is offered by this comprehensive and modular approach, which permits both 
proactive and reactive decision-making in actual network scenarios that have not received as much 
attention in the previous literature. 
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3. Materials and Methods 

A thorough simulation-based approach is created to assess how efficiently ML is incorporated into 
OSPF routing optimization. Using GNS3, an experimental environment is built with a network of 10 
Cisco routers spread out in a single topology to mimic a realistic enterprise-level infrastructure. Net-
work parameters, including latency, bandwidth, and traffic load, can be controlled by this configura-
tion. The approach is to split into four stages: data gathering, model training, real-time ML integration, 
and performance assessment. From several end-to-end router paths (e.g., R1 to R10) under both normal 
and overwhelmed circumstances, latency, OSPF-calculated cost, traffic volume, and link status are 
logged during the data collection phase. These datasets were then used to train and test a suite of ML 
models customized to particular routing improvement tasks: regression models for cost prediction, 
time-series models for traffic forecasting, unsupervised models for anomaly detection, and classifica-
tion models for failure prediction. The trained models were then included into a dynamic routing de-
cision layer that interacted with OSPF's cost assignment system. 

Figure 1 is a block diagram illustrating the end-to-end process of the proposed system for ML-
based OSPF optimization. It begins with gathering data from network devices by utilizing probes to 
collect statistics. The data are preprocessed and fed into a ML processing module where ML models 
perform cost optimization, traffic forecasting, anomaly discovery, and failure prediction. The output 
from these models is utilized to trigger automated configuration changes to OSPF costs via Ansible or 
Python scripts. A feedback loop tracks the performance of the network after ML; whenever perfor-
mance is lower than expected, the system initiates model retraining to ensure constant improvement 
and flexibility. 

 
Figure 1: Workflow of ML-driven OSPF path optimization. 

The performance of the improved system was compared to baseline OSPF behavior using key 
indicators such as latency, packet loss, route stability, and failure response time. Figure 2 shows the 
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GNS3-based testbed topology built of 10 linked Cisco routers set up using OSPF. Two Linux servers 
and two virtual PCs, one at each end, were used to run real-time statistics gathered by SNMP, NetFlow, 
and ICMP to dynamically influence traffic flows, path selections, and routing decisions. All simulation 
phases including baseline measurements, congestion injection, and ML-guided routing optimization 
rest on this topology. 

 

 

Figure 2: Testbed topology in GNS3 with 10 Cisco routers used for ML-enhanced OSPF simulation. 

3.1. Simulation Setup and Measurement Plan  
A thorough simulation in a controlled GNS3 environment with 10 linked Cisco routers (R1–R10) 

was run to assess the performance of ML-enhanced OSPF routing. With several iterations before and 
after ML integration, the testing approach comprises both baseline and stress conditions. Every stage 
of the experiment sought to measure variations in network performance and OSPF behavior. Designed 
to isolate the effect of ML on OSPF behavior, the simulation comprised five main phases as shown in 
table 1. Under typical load, the native OSPF route between R1 and R10 was seen in the baseline phase. 
Phase 2 saw the injection of bandwidth-hungry traffic to purposefully overload certain links. Without 
ML intervention, phase 3 re-evaluated performance under congestion. ML models in phase 4 dynami-
cally predicted and updated OSPF costs depending on real-time latency and interface load data. Phase 
5 ran the tests again to measure changes. 

 
Table 1: Simulation phases and objectives. 

Phase Action Objective 
1 Baseline ping/traceroute from R1 to R10 Measure initial path, delay, hops 
2 Inject traffic (iperf) to induce congestion Create routing stress 
3 Measure again (ping, traceroute, throughput) Capture OSPF path decision, delay 
4 Apply ML-driven cost changes on routers Based on real latency measurements 
5 Repeat measurement (ping, traceroute) Compare path, delay, route path, load 

 
Python scripts run on Linux servers are used to automate ML-driven routing decisions and data 

collection. These scripts collected real-time latency, interface load, and traffic data by means of SSH and 
SNMP interfacing with network devices. Then, Ansible playbooks are used to coordinate configuration 
modifications across all routers, then implement ML model outputs (e.g., modified OSPF costs), and 
launch tests such as ping, traceroute, and iperf. The combined use of Python and Ansible allows for 
quick retrieval of pre- and post-ML performance metrics across the GNS3-emulated network and re-
peatable, scalable simulations. 

Key network metrics were compared before and after cost changes to assess the effectiveness of 
the ML improvements. Table 2 lists the measurement tools and their coverage. The comparison under-
lined how ML-informed routing choices influenced important measures, including load distribution, 
throughput, route path, and round-trip time (RTT). Every measure was examined over several test cy-
cles to guarantee consistency and dependability in the results. 
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Table 2: Measurement tools tested pre-ML and post-ML. 
Metric Tool Pre-ML Post-ML 

RTT (ms) ping Successful Successful 
OSPF path/hops traceroute Successful Successful 

Interface load SNMP Successful Successful 
OSPF cost changes CLI logs Successful Successful 

Throughput (Mbps) iperf Successful Successful 

3.2. Data Collection 
The data collecting phase was run in a simulated network environment built in GNS3 comprising 

10 Cisco routers linked in a partial mesh topology. To mimic real-world network dynamics, tools in-
cluding iperf, traffic generators, and manual link degradation simulated different traffic patterns and 
link behaviors. Recorded key performance indicators were round-trip latency, OSPF-calculated path 
costs, interface traffic load, packet loss, and link status. Every end-to-end communication path, includ-
ing from R1 to R10, was evaluated under various load conditions, including idle, low, moderate, and 
high utilization. To act as input characteristics for ML models, data were timestamped and labeled with 
the relevant traffic conditions. The resulting dataset was labeled with traffic conditions, normalized 
metric ranges, and handled missing values during preprocessing. Subsequent phases' efficient model 
training and testing were founded on this structured dataset. Various tools and protocols were used to 
instrument the network to gather important performance data at specified intervals. Table 3 lists the 
tools employed, the measurements taken, and their corresponding sampling rates. 

 
Table 3: Data collection tools and sampling intervals. 

Metric Tool Sampling Interval 
Latency (ping) ICMP script 30 seconds 

Interface Utilization SNMP 30 seconds 
OSPF LSA Events Syslog/SNMP traps Event-driven 

Traffic Volume NetFlow 1-minute summary 
 

These tools gave a real-time, high-fidelity view of network conditions. All router pairs had scripted 
ICMP-based latency tests; SNMP agents were set up to gather interface counts and usage. NetFlow was 
used for total traffic volume analysis; syslog and SNMP traps logged OSPF Link State Advertisement 
(LSA) changes. 

3.3. Model Training 
During this stage, distinct ML models were deployed for each of the four enhancement goals. 

Trained on latency, traffic load, and observed performance, supervised regression models such as Ran-
dom Forest Regressor and XGBoost were used for dynamic cost optimization to forecast ideal OSPF 
costs. Traffic prediction was done using time-series forecasting models like LSTM and ARIMA, trained 
on past interface throughput data to project future congestion patterns. Using Isolation Forest and Au-
toencoder-based deep neural networks, anomaly detection used unsupervised learning to find unusual 
latency and traffic patterns that might indicate performance degradation or possible failures. Trained 
on historical data, classification models such as Random Forest Classifier and Logistic Regression fore-
cast binary results suggesting whether a link is likely to fail. To increase model accuracy and generali-
zability, grid search and cross-validation were used for hyperparameter tuning. The models were val-
idated using 80/20 training/test splits. 

3.4. Real-Time ML Integration 
The ML models will be integrated into a real-time decision-making system operating in parallel 

with the OSPF routing process after model training and validation. Using SNMP polling and NetFlow 
data, this module constantly tracks live network metrics and supplies these inputs to the trained mod-
els. Model forecasts serve as the basis for dynamic interface cost changes by means of OSPF configura-
tion file updates via automated scripts and APIs. The system can proactively preconfigure OSPF to 
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avoid congested routes forecasted by the LSTM/ARIMA models for traffic forecasting. Anomalies 
found by the unsupervised models will set off alerts or temporary path changes to preserve service 
quality. Preemptive traffic rerouting from vulnerable links using failure prediction results will help to 
minimize disturbance and downtime. This close integration produces a feedback loop in which ML 
insights constantly hone routing choices, changing to network conditions in almost real time. 

3.5. Performance Evaluation 
To show the effectiveness of the ML model applied to the OSPF network, the performance evalu-

ation tests will be done before and subsequent to the ML integrations. Different scenarios will be pro-
duced to capture the comprehensive link stability, latency, packet loss, and congestion. All the test cases 
will be measured from low to high traffic loads between selected routers. Default OSPF metrics will be 
used as baseline performance. After the experimental simulations, the results are expected to show 
improvement in latency, convergence, link failure, and path selection after applying ML models. Fur-
thermore, traffic prediction techniques will be implemented to dynamically assign OSPF costs that are 
correlated with the actual network behavior. The experimental setup is expected to efficiently detect 
anomalies and failures to avoid loops and performance issues in the future. 

3.6. ML-Driven Simulation Cases 
Multiple ML models are employed across various simulation scenarios. The experiments are eval-

uated based on four key performance factors: failure forecasting, anomaly detection, traffic prediction, 
and cost optimization. Each simulation is conducted using a specific ML model to examine its potential 
impact on network performance. To facilitate comprehensive evaluation, different routing paths are 
selected for each simulation, and the resulting data are collected for subsequent analysis. Table 4 below 
shows the simulation context corresponding to the ML models applied to the OSPF network. 

 
Table 4: ML models and corresponding simulation outcomes. 

Simulation ID 1 2 3 4 5 6 7 8 

Technique 
Dynamic 

Cost  
Optimization 

Traffic Predic-
tion 

Anomaly 
Detection 

Failure Pre-
diction 

Dynamic  
Cost  

Optimization 

Traffic Pre-
diction 

Anomaly 
Detection 

Failure 
 Prediction 

Model Used XGBoost LSTM 
Isolation For-

est 
Random For-

est 
Random  

Forest 
ARIMA 

Autoencod-
ers 

Logistic Re-
gression 

Objective 

Optimize in-
terface  

cost based 
 on real-time 

data 

Predict traffic  
congestion for 
 proactive path  

selection 

Detect net-
work irregu-
larities (e.g., 
abnormal la-

tency) 

Predict link 
failure 

based on  
historical 

data 

Optimize in-
terface cost 

based on 
 real-time 

data 

Forecast traf-
fic load to 
guide path 
selection 

Detect outli-
ers or anom-

alies in 
packet loss 

Predict poten-
tial link/node 
failure based 
on patterns 

Source R1 R1 R2 R6 R3 R8 R4 R7 
Destination R3 R5 R4 R7 R9 R10 R6 R8 

Latency (ms) 8 40 55 15 22 30 65 10 
Actual Cost 1 2 5 3 2 2 4 1 

Predicted Cost 0.9 2.1 5.2 3.4 2.3 2.1 4.5 1.1 
Traffic Load Low High Medium Low Low High High Low 

Actual Traffic 
Prediction 

100Mbps 200Mbps 150Mbps 80Mbps 110Mbps 220Mbps 250Mbps 60Mbps 

Predicted  
Traffic 

98Mbps 210Mbps 160Mbps 75Mbps 115Mbps 225Mbps 255Mbps 62Mbps 

Anomaly 
 Detected 

No No Yes No No No Yes No 

Link / Node 
Failure  

Forecast 
No No No 

Yes (Link 
Failure Fore-

cast) 
No No No 

Yes (Node 
failure fore-

cast) 
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4. Results 

The goal of integrating ML models was to improve OSPF performance by making path selection 
and optimization more efficient.  Data were gathered both prior to and following the application of ML 
models to the network. The simulation environment comprised routers operating OSPF with traffic 
injected to replicate both low and heavy network loads. ML models such as XGBoost, LSTM, ARIMA, 
Isolation Forest, and logistic regression were employed at various phases. The following sections pre-
sent an analysis of the impact of ML integrations on critical network performance metrics. The data 
gathered during the simulation tests are analyzed to reveal adjustments in routing efficiency, latency 
variation, and link reliability.  

4.1. Results and Analysis  
Since it is set to be an enterprise-class network, multiple different paths between suggested router 

have been considered for ML-enhancement applications. The simulation recorded values were latency 
and cost which are crucial for OSPF operated networks. These two values will impact the routing deci-
sion-making, which is crucial for the ML models to efficiently predict the traffic and adjust the path 
accordingly. Table 5 lists five separate simulations with different congestion levels and different routes 
in which the ML models proficiently predicted the cost and latency. 

 
Table 5: Latency and cost predictions after ML applications. 

Simulation ID Source Destination Latency (ms) Predicted  
Latency (ms) 

Actual 
 Cost 

Predicted 
Cost 

Traffic 
 Load 

1 R1 R2 5 6 1 1.1 Low 

2 R1 R3 20 23 2 2.2 Low 

3 R1 R4 50 52 3 3 High 

4 R2 R5 10 10 2 2.1 Low 

5 R5 R10 60 64 5 5.3 High 

 
The results observed from the table indicated that ML models closely predicted the crucial values 

required for path selection. Hence, an ML-driven network can take advantage of these procedures to 
predict link state and make forwarding decisions. It can also be observed that the selected route paths 
are not always optimal, and in some cases a longer path has been selected that led to higher latency and 
OSPF costs. These results clearly present the possibility of using ML models for OSPF path selection 
optimization along with traffic predictions, detecting anomalies and potential link/node failures. Figure 
3 presents a clustered chart of four optimized OSPF paths in which, after applying ML models, latency 
was enhanced compared to the traditional OSPF baselines. 

 
Figure 3: Latency before and after ML applications. 

Another important measure is throughput, which the chart in figure 4 uses to compare the net-
work's data speeds (in Mbps) before and after using ML models to improve OSPF routing choices across 
four different paths. Each pair of bars shows the throughput performance of a specific route. The left 
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bar represents the original throughput, and the right bar shows the better throughput after using ML 
for cost optimization, anomaly detection, and traffic prediction. 

 
Figure 4: Throughput before and after ML applications. 

5. Discussion 
The aggregated metric measurement undoubtedly shows the advantages of applying ML models 

to enhance OSPF cost calculation and traffic predictions. Before the ML intervention, the network had 
more latency, less throughput, and less efficient routing decisions; under high traffic conditions, OSPF 
paths were suboptimal. The network showed significant improvements after the application of ML 
methods, including XGBoost for dynamic cost optimization, LSTM and ARIMA for traffic prediction, 
and Isolation Forest for anomaly detection. Specifically, the algorithm's capacity to proactively change 
OSPF interface costs depending on real-time traffic data and collected data caused notable latency re-
duction. Improving total bandwidth use, throughput also rose as the routing protocol changed to less 
congested routes. Furthermore, post-ML integration, route paths with low cost and less congestion that 
were ignored before started to get occupied and used again to obtain better traffic distribution across 
the entire topology. The simulation results, achieved in a virtual GNS3 platform, sufficiently demon-
strate significant performance improvements after integrating ML models, with up to 30% enhance-
ment in latency reduction and throughput enhancement. Over OSPF in its native configuration, which 
calculates cost statically based on interface bandwidth alone, the dynamic cost adaptation of ML mod-
els on pattern learned separates routing intelligence by a wide margin. The absence of real-time adapt-
ability, which is nonexistent in traditional OSPF and only partially addressed in hybrid SDN–OSPF 
solutions, is ushered in by this work. 

Several prior works have studied optimization challenges. For example, Bernárdez et al.’s MAG-
NNETO [1] uses GNNs to optimize OSPF weights with multiple agents. However, while very promis-
ing, their research is more focused on distributed learning at a higher conceptual graph level, not in-
cluding end-to-end simulation outputs or directly addressing anomaly and failure prediction chal-
lenges. On the other hand, this approach offers a modular one where different ML models are stacked 
each to handle a specific aspect of network performance and stability. Similarly, Wei et al.'s HEATE 
algorithm [17] includes heuristic methods coupled with SDN so that energy consumption under OSPF 
is reduced. While it deals with path optimization from the energy conservation perspective, here the 
concern is toward performance metrics such as delay, throughput, and resiliency for applications with 
stringent latency requirements. In addition, the system operates on traditional OSPF networks, making 
it more relevant to legacy networks that do not have SDN infrastructure. 

Caria and Jukan's [18] work on hybrid SDN/OSPF link capacity planning provides an insightful 
study of the promise of topology-aware planning to increase failure tolerance. Their methodology, 
however, requires centralized SDN controllers and is not dynamic according to live traffic statistics. 
This work’s methodology, by contrast, utilizes Python automation and Ansible to communicate directly 
with the GNS3 emulated routers and permits the integration of ML-based decisions almost in real-time. 
In comparison with Zhang et al. [11], who only focused on anomaly detection using boosted decision 

http://doi.org/10.24017/science.2025.2.3


 
http://doi.org/10.24017/ science.2025.2.3  41 
 
trees, this work extends beyond isolated detection jobs and integrates these detections into a larger 
routing decision framework. Along the way, the system demonstrates how an ML-based pipeline can 
affect real routing decisions like path change and improved throughput not just alerting or logging 
anomalies. Finally, although Usama et al. [8] provide a valuable overview of unsupervised ML in net-
working, this paper presents a clear, simulated application of these concepts in OSPF-based systems 
with full-stack implementation and measurable performance. 

6. Conclusions 
To sum up, this study addresses the challenges that traditional OSPF faces that could be overcome 

by the use of ML methods in contemporary networks. Research outcomes effectively presented im-
provements in path selection, latency, and throughput after the employment of models such as 
XGBoost, LSTM, ARIMA, Isolation Forest, and logistic regression. The simulation observed network 
behavior in multiple different scenarios with variations in traffic loads. ML models helped in high-
traffic situations by dynamically adjusting OSPF costs and providing proactive traffic management. 
Moreover, predicting anomalies, congestion, and possible link/node failures were included in the ML-
provided features that led to a more robust and resilient network. The simulation results have indicated 
that ML models can support and improve traditional routing protocols by providing intelligent, adap-
tive decision-making that enhances the network's overall performance. Both latency and throughput 
were significantly improved, with an average performance gain of approximately 30%. This paper lays 
the groundwork for future research on applying ML for routing in enterprise-class and real-time net-
works by introducing new approaches for networks to be more responsive, scalable, efficient, auto-
mated, and self-improving. 
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