

 Kurdistan Journal of Applied Research (KJAR)

Print-ISSN: 2411-7684 | Electronic-ISSN: 2411-7706

KJAR. December 2025, volume 10, issue 2 kjar.spu.edu.iq

1. Introduction
The widespread adoption of multimedia distribution platforms such as YouTube, Twitch, and Fa-

cebook live has driven rapid growth in new social networking paradigms [1]. Advances in user de-
vices—featuring improved processing power, display resolution, and network connectivity—enable
seamless video quality adaptation, enhancing viewer satisfaction and fueling market expansion. Live
video streaming refers to the real-time recording and simultaneous broadcasting of media content to
multiple users over the internet [1]. According to the Cisco Visual Networking Index, a majority of the
internet has been used for video streaming over the past few years, from 73% in 2017 and increasing to
82% by 2022 [2].

It is important to provide a good Quality of Experience (QoE) for viewers, as even minor disrup-
tions can significantly diminish user satisfaction. QoE refers to the overall level of satisfaction perceived
by a user when interacting with a service or application. It transcends conventional Quality of Service
(QoS) measures, which emphasize technical parameters such as bandwidth, latency, and error rates, to
encompass the subjective evaluation of the user's experience. QoE considers elements such as content
quality, user expectations, emotional state, and contextual usage, offering a holistic assessment of the

Original Article

Improving Live Streaming QoE Through HLS Parame-
ter Tuning and Load Balancing to Mitigate Packet Loss
Bzav Shorsh Sabir a * , Aree Ali Mohammad b

a Department of Information Technology, Technical College of Informatics, Sulaimani Polytechnic University,
Sulaymaniyah, Iraq.
b Computer Science Department, College of Science, University of Sulaimani, Sulaymaniyah, Iraq.

Submitted: 25 May 2025
Revised: 1 July 2025
Accepted: 21 August 2025

* Corresponding Author:
bzav.shorsh.tci@spu.edu.iq

Keywords: HTTP Adaptive
streaming, Quality of service,
Transmission control protocol,
H.265.

How to cite this paper: B. S. Sa-
bir, A. A. Mohammad,” Im-
proving Live Streaming QoE
Through HLS Parameter Tun-
ing and Load Balancing to Miti-
gate Packet Loss”, KJAR, vol.
10, no. 2, pp: 77-92, Dec 2025,
doi: 10.24017/science.2025.2.7

Copyright: © 2025 by the authors.
This article is an open access arti-
cle distributed under the terms
and conditions of the Creative
Commons Attribution (CC BY-
NC-ND 4.0)

Abstract: Live video streaming denotes a video distribution service that con-
currently captures and transmits media material to all consumers in real time.
In recent years, most of the internet has been used for video streaming, as
platforms have transformed content consumption, providing immediate ac-
cess to films, television programs, live events, and user-generated materials
worldwide. Platforms like Twitch, YouTube, and Amazon Prime are built on
technologies that facilitate efficient content delivery, adaptive playback, and
personalized recommendations. Hypertext Transfer Protocol live streaming
is a popular protocol for adaptive video delivery that adjusts to network
bandwidth but not to packet loss, which can severely impact viewer Quality
of Experience (QoE). This study addresses the challenge of maintaining live
video streaming quality in environments with varying packet loss. To im-
prove QoE, this study proposes optimizing HLS configuration parameters
and evaluating the effects of two load balancing algorithms, round robin and
ring hash, in a simulated testbed. The study investigates how adjusting the
segment length, list length, and the group of pictures size affects the resilience
of the system to packet loss, as assessed by objective evaluation metrics in-
cluding peak signal-to-noise ratio and data loss percentage. Results show that
the ring hash algorithm consistently outperforms round robin in reducing
data loss, and with the optimal parameter configuration, data loss remained
below 1.4% even under 5% network packet loss.

https://kjar.spu.edu.iq/
https://doi.org/10.24017/science.2025.2.7
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://doi.org/10.24017/science.2025.2.7 78

service's effectiveness in fulfilling user requirements. It is essential, as it directly influences customer
retention and happiness, rendering it a primary concern for service providers seeking to optimize per-
formance and improve the user experience [3].

The conventional IP-based streaming method is push-based, where the media is typically
streamed over User Datagram Protocol (UDP) [4]. However, significant challenges are faced when de-
livering content to environments that involve various platforms [5]. One way to achieve a good QoE is
by using Hypertext Transfer Protocol (HTTP) Adaptive Streaming (HAS). HAS is a media streaming
technique that transmits video content in accordance with real-time network conditions and user capa-
bilities. It functions by dividing the video into separate parts, each encoded at different bitrates. The
video player adaptively alternates among different bitrates, guaranteeing seamless playback with min-
imal buffering [4]. HAS simplifies the delivery of content by using HTTP to transmit video fragments,
facilitating navigation around network address translation and firewalls [6]. A client individually re-
quests and retrieves each segment while preserving the playback session state, whereas the server is
not obligated to retain any state. Consequently, the client can download segments from many servers
without affecting system scalability [7]. Therefore, it takes advantage of standard web servers or caches
found in networks of internet service providers and Content Distribution Networks (CDN). The server
does not maintain responsibility for the client state; therefore, the client can download the segments
from different servers, and it eliminates the need for a persistent connection between the client and the
server [4].

There are two types of servers in a CDN; origin and replica. The origin server is where the original
version of the content is, and the replica has a copy of the content. A replica server can act as a media
server, cache server, or web server [8]. CDN is a useful method for raising the quality of the networks;
it significantly increases the quality of internet services, with video streaming platforms greatly bene-
fiting from it [9]. In a CDN, the content is dispersed from the origin server across multiple replica serv-
ers, and the client retrieves the content from the closest replica server, which will result in better QoE
and QoS [10, 11]. Edge servers can be used in conjunction with a load balancer to distribute the network
load; a load balancer's main job is to get requests from clients, check the load on available servers, and
direct each request to the server most capable of processing it. This choice is often made using set strat-
egies or algorithms [12].

HTTP Live Streaming (HLS) [13] is a video streaming protocol created by Apple in 2009 to transmit
continuous video over the internet in a reliable manner. HLS is one of the HAS protocols, which use
HTTP as the application and Transmission Control Protocol (TCP) as the transport layer protocol [4]. It
is a pull-based streaming method where the video is segmented into chunks and encoded into multiple
different bitrates. The server also generates a manifest file containing metadata for the video, audio,
and subtitles, along with their corresponding retrieval locations. The client decides to pull the segments
of the appropriate bitrate based on the available bandwidth to maximize QoE [4, 5, 14]. Other HAS
protocols are Microsoft smooth streaming, Adobe’s Dynamic HTTP Streaming, and Dynamic Adaptive
Streaming over HTTP (DASH) [15].

HLS has two primary parameters that can be tuned to optimize both QoE and QoS. The first is
HLS Time, which defines the length of each segment, expressed in seconds, and will be referred to as
segment length [16]. The second is HLS List Size, which determines the maximum number of segments
included in the playlist. During HLS streaming, metadata are generated containing the most recent
available segments along with their corresponding retrieval locations; this parameter will be referred
to as list length [16].

Various studies have explored techniques to improve QoS and QoE in live streaming. However,
they have not examined the combined effect of segment length, list length, and Group of Pictures (GOP)
size in HLS when used alongside CDN and a load balancer to reduce packet loss. This study has a
threefold contribution: (1) improving QoE in live streaming using HLS by reducing the impact of packet
loss on data transmission through the use of a CDN and load balancer; (2) investigating the effects of
different segment lengths and list lengths on packet loss; and (3) examining the influence of various
GOP sizes on packet loss.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 79

The remainder of this paper is as follows: recent papers that studied video streaming are reviewed
in section 2. Section 3 details the proposed method. Section 4, test results are shown in detail. Simulated
testbed discussion is explained in section 5, and section 6 concludes and suggests potential future re-
search directions.

2. Related Works
Providing a good QoE for viewers is the main focus when it comes to video streaming. Buffering,

delay and quality loss can lead to the viewer being unsatisfied. In recent years, various research studies
conducted on live streaming have been reviewed that contributed to improving QoE or QoS parameters
through improving data transmission or reducing data loss. Among these efforts, Gutterman et al. [17]
presented STAndard Low-LAtency vIdeo cONtrol (STALLION), which is an Adaptive Bitrate (ABR)
algorithm that dynamically modifies bitrate selection in response to network throughput and latency
variations in order to enable low-latency video streaming. STALLION uses the standard deviation of
throughput and latency to make more stable and responsive bitrate decisions than traditional ABR
systems, which only use buffer levels or average throughput. STALLION achieved a 1.8x boost in bi-
trate and lowered stall duration by 4.3x. Martinez-Caro et al. [18] presented a machine learning-based
approach to detecting and predicting stalling events in video streaming over the DASH protocol to
improve QoE. Two models are proposed: one for identifying stalling events in real-time based on
transport-layer packet behavior and another using a recurrent neural network with long short-term
memory to predict future stalling events before they occur. Using a long-term evolution emulation en-
vironment, their method effectively classified stalling events and forecast upcoming playback interrup-
tions, achieving an F1 score of 0.923 with an error rate of 10.83%. The findings suggest that network-
layer analysis can enhance video streaming performance without requiring direct access to the user’s
playback device.

The internet's architecture fundamentally adheres to a best-effort principle, lacking guarantees for
the reliable transmission of packets. Consequently, applications must address challenges such as packet
loss [19]. This issue is particularly critical for live streaming applications, as it leads to stalls, lowering
the QoE and increasing the possibility of increasing the streaming delay in TCP-based streaming pro-
tocols. To address this issue, Bienik et al. [20] examined how Packet Loss Rate (PLR) affects the quality
of compressed high-resolution videos that are transmitted across IP networks using the H.264 and
H.265 codecs. 11,200 full high definition and ultra-high-definition video sequences encoded at various
bitrates (1–15 Mbps) and employed simulated packet loss rates ranging from 0% to 1%. Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and absolute category rating were
used to assess video quality objectively and subjectively. The findings support the notion that video
quality declines with increasing PLR, with higher bitrates being more susceptible to this phenomenon.
Furthermore, the results imply that in lossy contexts, smaller bitrates can occasionally preserve higher
perceived quality. In a more network-focused approach, Clayman et al. [21] introduced a novel ap-
proach to streaming using Big Packer Protocol (BPP) with its in-network packet wash mechanism,
which eliminates specific chunks rather than dropping the packets as it occurs in UDP or retransmitting
them like TCP. BPP is tailored for high-bandwidth and low-latency applications, and they mapped
H.264 Scalable Video Coding (SVC) into BPP packets, allowing dynamic adaptation while transmitting.
Performance evaluation of BPP compared to TCP and UDP shows BPP significantly reduces latency
and packet loss while maintaining better QoE than UDP or TCP. To improve packet handling in wire-
less environments, Taha et al. [22] proposed a smart algorithm that uses adaptive Quantization Param-
eters (QP) to improve QoE for video streaming in 5G wireless networks. The approach ensures
smoother streaming by dynamically modifying QP to lessen the incidence of packet loss. According to
experimental findings using Mean Opinion Score (MOS), QoE is enhanced by an ideal QP of 35 for low-
motion videos and a QP of 30 for high-motion videos.

Building on resilience to burst losses, Rudow et al. [23] introduced Tambur, a novel loss recovery
technique based on streaming codes that effectively handles bursty packet losses to enhance the quality
of video conferences. By leveraging sequential packet decoding to optimize loss recovery, Tambur is
able to reconstruct lost frames while consuming 35.1% less bandwidth than current forward error

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 80

correction techniques. Simulations on real-world Microsoft Teams traces revealed that Tambur reduces
decoding errors by 26.5% and results in a 29% reduction in video freeze length. Tüker et al. [24] also
employed BPP and its Packet Wash mechanism to investigate packet trimming at the edge as an in-
network video quality adaptation strategy to selectively remove less critical video data rather than los-
ing complete packets when bandwidth is constrained. By trimming packets at edge nodes, this tech-
nique maximizes bandwidth utilization while preserving low latency and high QoE. According to ex-
perimental findings, edge packet cutting offers higher QoE than HAS, guaranteeing smoother playback
and improved scalability. Focusing on codec performance under loss, Abdullah et al. [25] carried out a
comparative study comparing the effects of wireless network packet loss on real-time video streaming
with H.265 and H.266 codecs. Through their work, an experimental testbed using FFmpeg and NetEm
was introduced to assess codec performance in a variety of packet loss scenarios. The study discovered
that, although both codecs showed quality degradation with increased packet loss, H.266 consistently
provided superior compression efficiency and resilience by concentrating on objective QoE metrics like
PSNR. Most recently, Meng et al. [26] introduced a packet loss recovery technique designed for edge-
based interactive video streaming, such as Stadia, called Hairpin. It dynamically differentiates between
initial transmissions and retransmissions to strike a balance between low latency and effective band-
width usage. Hairpin lowers bandwidth costs by 40% and deadline miss rates by 32%, according to
experiments conducted on real-world deployments.

CDN was initially developed to overcome the limitations of web caching. In video streaming, it
seeks to improve QoE in terms of providing consumers with content while making better use of net-
work resources [27, 28]. To examine this influence on content delivery and network efficiency, Shabrina
et al. [29] looked into how CDNs affected QoS during live video streaming with HLS. Using Amazon
Web Services (AWS) CloudFront as the CDN infrastructure, the researchers ran an experiment in which
live video was broadcast from Bandung, Indonesia, to Tokyo, Japan. They measured throughput and
packet loss ratio to evaluate streaming performance with and without a CDN, reporting an average
throughput of 4452.6 kbps (compared to 3990.4 kbps without CDN) and a packet loss reduction to 0.08%
(from 0.33% without CDN). Patel et al. [30] examined the performance of video streaming using cloud-
based services and investigated the effects of different cloud-based CDNs on video streaming, includ-
ing AWS CloudFront, Google Cloud, Azure, and Akamai, managing encoding, storage, and adaptive
streaming to optimize video transmission by utilizing Spark for distributed analysis and Kafka for real-
time video processing. According to the study, Google Cloud performs better in South America and
Europe, while AWS CloudFront offers superior QoE in places such as Asia and North America. Further
investigating CDN integration, Sangeetha et al. [31] examined the improvement of QoS for HLS with
the incorporation of CDN alongside H.265 encoding. The findings indicate that CDN integration en-
hances average throughput, concurrently reducing the packet loss ratio to 0.072, in contrast to a 0.297%
loss in the absence of CDN.

Table 1 highlights the key aspects of each study, emphasizing their research focus, streaming pro-
tocol employed, use of CDN, video coder utilized, experimental environment, and outcomes.

Table 1: Comparison of related works.

Research Focus Streaming
Protocol

CDN Video
Coder

Environ-
ment

Result

[18]
Predict stalling

events DASH
Not
used H.264 Simulation Achieved F1 Score of 0.923.

[20]
Decrease impact of

packet loss RTP
Not
used

H.264 and
H.265 Simulation

Quality of sequences affected by
packet loss ratio declines with in-

creasing bit rate.

[21]
Decrease latency
and packet loss

BPP
Not
used

H.264 SVC Simulation
BPP gives better QoE than UDP or

TCP.

[22]
Decrease impact of

packet loss
UDP

Not
used

H.264 and
H.265

Real world
Optimal QP is 35 for low motion and

30 for high motion.

[23]
Decrease impact of

packet loss
UDP

Not
used

VP9 Simulation

Tambur reduces the frequency of de-
coding failures for video frames by
26% and the bandwidth used for re-

dundancy by 35%.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 81

Table 1: Continue

[24]
Decrease packet

loss
BPP

Not
used

H.264 SVC Simulation
Shows trimming packets at the edge
is better than using an ONOS con-

troller.

[25]
Decrease impact of

packet loss
UDP

Not
used

H.265 and
H.266

Simulation
Shows H.266 is more robust against

network packet loss

[26]
Decrease packet

loss
Customized

RTP
Not
used

N/A Real world
Hairpin lowers bandwidth costs by
40% and deadline miss rates by 32%

[29]
Decrease packet

loss
HLS Used H.264 Real world

Shows CDN reduces packet loss
from 0.33% to 0.08%

[31] Decrease packet
loss

HLS Used H.265 Real world Shows CDN reduces packet loss
from 0.297% to 0.072%

3. Materials and Methods
A virtual environment is created using VMware Workstation to simulate two scenarios for many

cases on a host machine with a Ryzen 9 7900 CPU and 32GB of DDR5 RAM. Figure 1 shows the general
diagram of the proposed system.

Figure 1: General block diagram of the proposed system.

3.1. Video Characteristics
The input video is 1920x1080, 4 minutes and 32 seconds, 24 frames per second. The video is en-

coded in real-time using FFmpeg into three different bitrates using H.265 using the ultrafast preset:
• High: 4.8 Mbps bitrate, ~160 MB total file size.
• Medium: 3 Mbps bitrate, ~100 MB total file size.
• Low: 1 Mbps, ~35 MB total file size.

When encoding a video for streaming with HLS, a suitable GOP size is important; the GOP size

designates the quantity and arrangement of I-frames, P-frames, and B-frames [32]. I-frames refer to
intra-coded frames that can function as independent images and are frequently utilized as a point of
reference for a brand-new scene or a significant alteration to the previously sent frame sequence. Only
predictive data are contained in P-frames, which are produced by examining the deltas between the
current and prior frames. B-frames are produced by comparing the differences between the preceding
and subsequent reference frames. Both P-frames and B-frames have the benefit of using far fewer re-
sources when stored or transferred; however, they lack the information necessary to watch the associ-
ated video frame [33].

The segment lengths and list lengths used in this study introduce noticeable latency; they were
chosen because their delay is significantly lower than that of larger values, while maintaining sufficient
resilience to packet loss. The GOP size should align with the segment length, meaning it should be

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 82

equal to, or a divisor of, the number of frames in a segment (e.g., the same, half, one-third, one-fourth,
etc.) [16]. However, a very small GOP size can lead to high resource utilization.

3.2. Network Design
3.2.1. Origin Server
The origin server is a Debian 12 Virtual Machine (VM), it uses FFmpeg to encode and segment the

video in real time, and it uses Nginx server to stream the video via HLS.

3.2.2. Cache Servers
50 Docker containers of Nginx are created and configured to act as cache servers to fetch, cache,

and send content to the receivers upon request. The Docker containers are created inside Graphical
Network Simulator 3 (GNS3) VM, which is a network experimentation framework that supports mul-
tivendor models and emulation of actual devices [34].

3.2.3. Load Balancer
The load balancer is a Debian 12 VM that runs EnvoyProxy to distribute requests from the clients

based on the algorithm used (round robin or ring hash) to one of the cache servers.
• Round robin is one of the most straightforward load balancing algorithms; it makes use

of a circular list and a pointer to the most recent server that was chosen [35].
• Ring hash implements consistent hashing, where every request is routed to a host by hash-

ing a property of the request and locating the closest corresponding host clockwise around
the ring [36].

Ring hash is proposed, as it has minimal disruption when servers are added/removed to provide
the least data loss to improve QoE, and round robin is tested for comparison to ring hash.

3.2.4. Clients
The client is a Debian 12 VM. For the first scenario, FFmpeg is used to download the content. For

the second scenario, Java is used with FFmpeg to simulate 60 clients requesting the load balancer to
fetch the contents.

3.3. Simulation Scenarios
Two distinct scenarios have been designed to analyze the differences in segment lengths, list

lengths and GOP sizes. Table 2 outlines the key differences between the two scenarios for a clear and
structured comparison.

Table 2: Details of scenario 1 and 2.

Test Parameters Scenario 1 Scenario 2

Number of cache servers 1 50

Usage of load balancer Not used Used

Number of clients 1 60

Tested load balancing algorithms N/A Round Robin and Ring Hash

Tested segment length 1, 1.5 and 2 seconds 1 and 1.5 seconds

Tested list length 5 and 10 segments 5 and 10 segments

Tested GOP sizes
12, 24, 36 and 48 frames depending on

the segment length.
12, 24 and 36 depending on the seg-

ment length.

Total tested cases 14 cases 16 cases

3.3.1. Scenario 1: One Client and One Cache Server
In the first case, the main server streams the video in real time, and the client requests a cache

server to download the high-quality video. The downloaded video is then compared to the original
video to observe the QoE. Figure 2 shows the network design of this scenario; the packet loss simula-
tions are put on the link in GNS3 between the main server/cache server and the cache server/client. The
diagram in figure 3 shows all the tested cases performed in this scenario, for example:

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 83

• Case 1: the segment length was 1 second, the GOP size was 12 frames, and the list length
was 5 segments.

• Case 2: the segment length was 1 second, the GOP size was 12 frames, and the list length
was 10 segments.

• Case 3: the segment length was 1 second, the GOP size was 24 frames, and the list length
was 5 segments.

• etc.
For every case, packet loss was simulated from 1% to 6%.

Figure 2: Network design of scenario 1.

Figure 3: Tested cases of scenario 1.

Figure 4 shows the process diagram of this scenario. The client requests the cache server for the
contents to pull the stream, the cache server checks if the content is available, and if it already has the
content, it will reply with the content. If the content is not available in the cache server, the cache server
requests the origin server, stores a copy of the content and sends the content to the client. This process
occurs while the origin server continuously encodes and segments the live video into multiple repre-
sentations.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 84

Figure 4: Process diagram of scenario 1.

3.3.2. Scenario 2: 60 Clients and 50 Cache Servers
Sixteen cases are tested with different parameters of segment length, list length, GOP size, and

load balancer algorithm, as seen in figure 5. Similar to scenario 1, for each case, packet loss is simulated
from 1% to 6%.

Figure 5: Tested cases of scenario 2.

For every case, packet loss from 1% to 6% is simulated. Sixty clients request the streamed video
and EnvoyProxy is used to distribute the requests of the clients to 50 cache servers. Java is used to
simulate the clients at the same time: 20 clients request the high-quality stream, 20 clients request the
medium-quality stream, and 20 clients request the low-quality stream. The clients request the load bal-
ancer to download the streamed video; round robin and ring hash algorithms are tested in EnvoyProxy,
and their differences are compared with the different parameters shown in Figure 5 above to see the
impact of packet loss on data loss. Figure 6 shows the network design of scenario 2, the packet loss
simulations are put on the link in GNS3 between the main server-cache server and the cache server-
load balancer.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 85

Figure 7 shows the process diagram of scenario 2. The client requests the load balancer for the
contents to pull the stream, the load balancer requests the cache server based on the load balancing
algorithm chosen, the cache server checks if the content is available, if it already has the content, it will
reply with the content. If the content is not available in the cache server, the cache server requests the
origin server, stores a copy of the content, and sends the content to the load balancer, and the load
balancer replies to the client. This workflow is carried out while the origin server continuously encodes
and segments the live video into multiple representations.

Figure 6: Network design of scenario 2.

Figure 7: Process diagram of scenario 2.

3.4. Performance Analysis Metrics
For the first scenario, for evaluation of the tests conducted, PSNR is used. PSNR is frequently em-

ployed as a metric to assess image quality, its primary component is the Mean Square Error (MSE),
from which it is formed [37]. Calculated over the image's dimensions, MSE is the sum of the squared
differences between the original and processed image's pixel values. The MSE value is transformed
logarithmically to produce PSNR. It shows the inaccuracy in an image; higher PSNR values, which
imply higher image quality, are produced by fewer disparities in pixel values. In theory, PSNR can
become close to infinity if the pixel values of the original and processed images remain unchanged. On

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 86

the other hand, PSNR values decrease with more pixel value discrepancies, suggesting a drop in image
quality [37]. For the second scenario, the total size of the downloaded files is calculated and compared
with the expected size to quantify the impact of packet loss on data loss during transmission.

4. Results

Scenario 1
As seen in figure 8 and figure 9, videos sent with a higher segment length are less affected by

network packet loss, leading to a higher PSNR. A bigger list length (10, in this case) also decreased the
impact of packet loss, especially when the segment length was 1 second, due to the client having more
time to recover the packets before segment expiration happened. GOP size did not have a noticeable
impact. In most cases, GOP size only had a slight impact when packet loss became 6%; higher GOP size
was better when segment length was 1 second, and lower GOP size was better when segment length
was 1.5 or 2 seconds. Table S5 presents the numerical results of this scenario.

Figure 8: Scenario 1, PSNR when segment length is 1 sec-

ond.

Figure 9: Scenario 1, PSNR when segment length is 1.5 sec-

onds.

HLS retrieves three segments before initiating playback; therefore, segment length and list length
have a substantial effect on stream delay, as seen in figure 10. The minimum delay is three times the
segment length, and the maximum delay is the segment length multiplied by the list length; for in-
stance, with a segment length of 1.5 seconds and a list length of five segments, the stream delay ranges
from 4.5 to 7.5 seconds.

Figure 10: Expected delay depending on segment and list length.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 87

Scenario 2
When there are more clients and a load balancer is used, the results are not as straightforward as

in scenario 1; for the segment length of 1 second and list length of five segments, as seen in figure 11,
different GOP sizes did not have a markable difference with round robin. However, while using ring
hash, a GOP size of 24 frames consistently had better results than 12 frames.

When the list length increased to 10 segments, the differences became more noticeable. As shown
in figure 12, a GOP size of 12 frames performed better with round robin, while a higher GOP size was
more effective with ring hash. For a segment length of 1 second with ring hash, from a packet loss of
4% to 6%, on average, the amount of data sent with the higher GOP size was 1.93% more than the lower
size.

Figure 11: Scenario 2, data loss ratio when segment length is

1 second and list length is five segments.

Figure 12: Scenario 2, data loss ratio when segment length is

1 second and list length is 10 segments.

Similar to the segment length of 1 second, differences were less noticeable for the segment length
of 1.5 seconds when the list length was five segments compared to 10 segments. However, with ring
hash, a higher GOP size resulted in more data being lost, as seen in figure 13. Less data was lost when
the GOP size was 12 frames. When the list length increased to 10 segments, the GOP size had little effect
when using round robin; however, with ring hash, a GOP size of 12 frames consistently resulted in less
data loss, as shown in figure 14.

Figure 13: Scenario 2, data loss ratio when segment length is

1.5 seconds and list length is five segments.

Figure 14: Scenario 2, data loss ratio when segment length is

1.5 seconds and list length is 10 segments.

With ring hash, when comparing the segment length of 1 and 1.5 seconds with a list length of five
segments, a longer segment length can make a bigger difference than GOP size, as seen in figure 15.
However, with a list length of 10 segments, GOP size can also have a substantial influence, as seen in
figure 16, where a segment length of 1 second with a GOP size of 24 frames had better results in certain
cases than a segment length of 1.5 seconds with a GOP size of 36 frames.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 88

Figure 15: Scenario 2, data loss ratio when list length is five

segments and load balancer algorithm is ring hash.

Figure 16: Scenario 2, data loss ratio when list length is 10

segments and load balancer algorithm is ring hash.

Figure 17 and figure 18 show the impact of list length on segment length of 1 and 1.5 seconds,
respectively. List length had a much smaller impact on data received at the clients when segment length
was 1.5 seconds compared to 1 second, GOP size had the majority of the impact. For a segment length
of 1 second, both list length and GOP size had a remarkable impact on decreasing data loss. The detailed
numerical results for this scenario are provided in Table S5.

Figure 17: Scenario 2, data loss ratio when segment length is

1 second and load balancer algorithm is ring hash.

Figure 18: Scenario 2, data loss ratio when segment length is

1.5 seconds and load balancer algorithm is ring hash.

5. Discussion
According to the observations, segment length and list length can have a huge impact on the re-

duction of data loss due to packet loss. When using a load balancer, the ring hash algorithm consistently
reduced the impact of packet loss on data arriving at the clients compared to round robin, as seen in
figure 19. GOP size does not have any impact on stream delay, and the different GOP sizes tested also
had little to no impact on the quality of the output video when their PSNR was calculated.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 89

Figure 19: Average data loss comparison between round robin and ring hash.

The findings show that longer segment length and/or bigger list length will reduce the impact of
packet loss due to the player having more time to recover the lost packet at the cost of longer stream
delays as seen in figures 15, 16, 17 and 18. Optimal GOP size (24 frames for a segment length of 1 second,
12 frames for a segment length of 1.5 seconds) can make a significant difference in reducing the impact
of packet loss on data arriving at the clients.

The optimal parameters for HLS depend on the application; if stream delay is not important, longer
segment duration and/or list length will yield a better result against packet loss. As seen in Figure 18, a
segment length of 1.5 seconds with a GOP size of 12 frames and a list length of 10 segments yields the
best result to combat packet loss but with the consequence of a stream delay between 4.5 and 15 seconds.
But with the list length of five segments, the maximum delay is cut by half while only being more sus-
ceptible to data loss by an average of 0.25% between 4% and 6% packet loss compared to when the list
length is 10 segments.

Table 3 compares this study with relevant prior works. While Taha and Ali [22] examines the effect
of QP and Abdullah et al. [25] explores the difference between H.265 and H.266 in a low latency live
streaming environment with packet loss, this study focuses on the impact of segment length, list length,
GOP size, and load balancing algorithms in a higher latency live streaming context.

Table 3: Comparison of this study to relevant related works.

Parameters [22] [25] Scenario 1 of this study Scenario 2 of this study

Protocol UDP UDP HLS HLS
Codec H.264 and H.265 H.265 and H.266 H.265 H.265
CDN Not used Not used Not used Used

Evaluation Metric PSNR, SSIM and MOS PSNR and SSIM PSNR Data Loss
Environment Real-world Simulation Simulation Simulation

Stream latency Low latency Low latency High latency High latency
Range of packet

loss
0% to 1% 0% to 10% 0% to 6% 0% to 6%

Contribution

Shows the effect of QP
in low and high mo-
tion videos in a net-

work with packet loss

Shows the degrada-
tion of H.265 and

H.266 in a network
with packet loss

Shows the effect of seg-
ment length, list length
and GOP size in a net-
work with packet loss

Shows the effect of seg-
ment length, list length,
GOP size, and load bal-
ancing algorithm in a

network with packet loss

Segment length of 1.5 seconds with a list length of five or 10 segments would not be viable for video

chats or conferences due to the high stream delay, but it is viable for streams where delay does not affect

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 90

QoE, such as sport events, as 15 seconds of delay is acceptable while also being highly resistant to data
loss. The limitations of this paper are the absence of subjective and other objective evaluation metrics,
as PSNR and data loss may fail to reflect the full extent of the result, because in some cases no amount
of data is lost but buffering is still a possibility. In addition, he implementation of the testbed in a virtual
environment is another limitation, as no other real-world variables are taken into consideration other
than packet loss.

6. Conclusions
The adaptive bitrate algorithm of HLS only takes bandwidth into consideration when picking the

appropriate stream; network packet loss leads to data loss, stalls, and delays in the stream, resulting in
a lower QoE for the viewers. In this study, data loss due to packet loss is investigated in a controlled
environment, and various cases are observed to reduce the impact of packet loss. The findings highlight
that higher segment and list lengths can improve live video streams against data loss, and GOP size can
have a significant impact on it as well. Using a load balancer with ring hash consistently outperformed
round robin for HLS.

This research can be extended in several directions. One possibility is to implement load balancing
logic within the client player to reduce data loss, eliminate the need for a dedicated load balancing
server, and minimize stream delay. Another is to evaluate the proposed methods and parameters in
real-world environments, as factors such as cost and varying network conditions were not considered
in this study. Further work could involve comparing the ring hash algorithm with the maglev algorithm,
which offers faster host lookup times but less stability when upstream hosts change. Additional direc-
tions include comparing and testing the optimal QP proposed in previous studies with different codecs
in the same testbed, incorporating other objective evaluation metrics such as buffering, conducting sub-
jective user evaluations, and assessing the resource requirements for the various configurations.

Author contribution: Bzav Shorsh Sabir: Investigation: Writing – original draft, Writing – review & editing. Aree Ali
Mohammad: Supervision, Writing – review & editing.

Data availability: Data will be available upon reasonable request by the authors.

Conflicts of interest: The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Funding: The authors did not receive support from any organization for the conducting of the study.

References
[1] N. N. Dao, A. T. Tran, N. H. Tu, T. T. Thanh, V. N. Q. Bao, and S. Cho, “A contemporary survey on live video streaming

from a computation-driven perspective,” ACM Computing Surveys, vol. 54, no. 10s, pp. 1–38, 2022, doi: 10.1145/3519552.
[2] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022,” White paper, vol. 1, no. 1, pp. 1–38, 2018.
[3] K. Bouraqia, E. Sabir, M. Sadik, and L. Ladid, “Quality of experience for streaming services: measurements, challenges and

insights,” IEEE Access, vol. 8, pp. 13341–13361, 2020, doi: 10.1109/ACCESS.2020.2965099.
[4] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann, “A survey on bitrate adaptation schemes for stream-

ing media over HTTP,” IEEE Communications Surveys and Tutorials, vol. 21, no. 1, pp. 562–585, Jan. 2019, doi:
10.1109/COMST.2018.2862938.

[5] S. Kesavan, E. Saravana Kumar, A. Kumar, and K. Vengatesan, “An investigation on adaptive HTTP media streaming Qual-
ity-of-Experience (QoE) and agility using cloud media services,” International Journal of Computers and Applications, vol. 43,
no. 5, pp. 431–444, 2021, doi: 10.1080/1206212X.2019.1575034.

[6] L. Popa, A. Ghodsi, and I. Stoica, “HTTP as the narrow waist of the future internet,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010, pp. 1–6. doi: 10.1145/1868447.1868453.

[7] X. Liu et al., “A case for a coordinated internet video control plane,” in Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer communication, 2012, pp. 359–370. doi:
10.1145/2342356.2342431.

[8] M. Pathan and R. Buyya, “A taxonomy of CDNs,” in Content delivery networks, Springer, 2008, pp. 33–77. doi: 0.1007/978-3-
540-77887-5_2.

[9] D. A. S. George and A. S. H. George, “The evolution of content delivery network: how it enhances video services, streaming,
games, ecommerce, and advertising,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation
Engineering (IJAREEIE), vol. 10, no. 07, pp. 10435–10442, 2021, doi: 10.5281/zenodo.6788660.

http://doi.org/10.24017/science.2025.2.7

http://doi.org/10.24017/science.2025.2.7 91

[10] Z. Zeng and H. Zhang, “A study on cache strategy of CDN stream media,” in 2020 IEEE 9th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), IEEE, 2020, pp. 1424–1429. doi: 10.1109/ITAIC49862.2020.9338805.

[11] G. Peng, “CDN: Content distribution network,” arXiv preprint cs/0411069, 2004, doi: 10.48550/arXiv.cs/0411069.
[12] M. Rahman, S. Iqbal, and J. Gao, “Load balancer as a service in cloud computing,” in 2014 IEEE 8th international symposium

on service oriented system engineering, IEEE, 2014, pp. 204–211. doi: 10.1109/SOSE.2014.31.
[13] R. Pantos and W. May, “HTTP live streaming.” Accessed: Mar. 01, 2025. [Online]. Available: https://www.rfc-edi-

tor.org/rfc/rfc8216
[14] T. Lyko, M. Broadbent, N. Race, M. Nilsson, P. Farrow, and S. Appleby, “Improving quality of experience in adaptive low

latency live streaming,” Multimedia Tools and Applications, vol. 83, no. 6, pp. 15957–15983, 2024, doi: 10.1007/s11042-023-
15895-9.

[15] O. Oyman and S. Singh, “Quality of experience for HTTP adaptive streaming services,” IEEE Communications Magazine, vol.
50, no. 4, pp. 20–27, 2012, doi: 10.1109/MCOM.2012.6178830.

[16] “FFMPEG HLS Parameters.” Accessed: Mar. 01, 2025. [Online]. Available: https://ffmpeg.org/ffmpeg-all.html#hls-2.
[17] C. Gutterman, B. Fridman, T. Gilliland, Y. Hu, and G. Zussman, “Stallion: Video adaptation algorithm for low-latency video

streaming,” in Proceedings of the 11th ACM Multimedia Systems Conference, Association for Computing Machinery, 2020, pp.
327–332. doi: 10.1145/3339825.3397044.

[18] J. M. Martinez-Caro and M. D. Cano, “On the identification and prediction of stalling events to improve qoe in video stream-
ing,” Electronics (Basel), vol. 10, no. 6, p. 753, 2021, doi: 10.3390/electronics10060753.

[19] D. Ray, V. Bobadilla Riquelme, and S. Seshan, “Prism: Handling packet loss for ultra-low latency video,” in Proceedings of
the 30th ACM International Conference on Multimedia, 2022, pp. 3104–3114. doi: 10.1145/3503161.3547856.

[20] J. Bienik, M. Uhrina, L. Sevcik, and A. Holesova, “Impact of packet loss rate on quality of compressed high resolution vid-
eos,” Sensors, vol. 23, no. 5, p. 2744, 2023, doi: 10.3390/s23052744.

[21] S. Clayman and M. Sayıt, “Low latency low loss media delivery utilizing in-network packet wash,” Journal of Network and
Systems Management, vol. 31, no. 1, p. 29, 2023, doi: 10.1007/s10922-022-09712-1.

[22] M. Taha and A. Ali, “Smart algorithm in wireless networks for video streaming based on adaptive quantization,” Concur-
rency and Computing: Practice and Experience, vol. 35, no. 9, p. e7633, 2023, doi: 10.1002/cpe.7633.

[23] M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan, M. Ellis, and K. V Rashmi, “Tambur: Efficient loss recovery for
videoconferencing via streaming codes,” in 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI
23), 2023, pp. 953–971. Available: https://www.usenix.org/system/files/nsdi23-rudow.pdf.

[24] M. Tüker, E. Karakış, M. Sayıt, and S. Clayman, “Using packet trimming at the edge for in-network video quality adaption,”
Annals of Telecommunications, vol. 79, no. 3, pp. 197–210, 2024, doi: 10.1007/s12243-023-00981-8.

[25] M. T. Abdullah, N. W. Abdulrahman, A. A. Mohammed, and D. N. Hama, “Impact of Wireless Network Packet Loss on
Real-Time Video Streaming Application: A Comparative Study of H. 265 and H. 266 Codecs,” Kurdistan Journal of Applied
Research, vol. 9, no. 2, pp. 23–41, 2024, doi: 10.24017/science.2024.2.3.

[26] Z. Meng et al., “Hairpin: Rethinking packet loss recovery in edge-based interactive video streaming,” in 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24), 2024, pp. 907–926. Available: https://www.usenix.org/sys-
tem/files/nsdi24spring_prepub_meng.pdf.

[27] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, and M. Varvello, “From content delivery today to information centric
networking,” Computer networks, vol. 57, no. 16, pp. 3116–3127, 2013, doi: 10.1016/j.comnet.2013.07.002.

[28] M. Ghaznavi, E. Jalalpour, M. A. Salahuddin, R. Boutaba, D. Migault, and S. Preda, “Content delivery network security: A
survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2166–2190, 2021, doi: 10.1109/COMST.2021.3093492.

[29] W. E. Shabrina, D. W. Sudiharto, E. Ariyanto, and M. Al Makky, “The QoS improvement using CDN for live video streaming
with HLS,” in 2020 International Conference on Smart Technology and Applications (ICoSTA), IEEE, 2020, pp. 1–5. doi:
10.1109/ICoSTA48221.2020.1570613984.

[30] U. Patel, S. Tanwar, and A. Nair, “Performance analysis of video on-demand and live video streaming using cloud based
services,” Scalable Computing: Practice and Experience, vol. 21, no. 3, pp. 479–496, 2020, doi: 10.12694/scpe.v21i3.1764.

[31] K. B. Sangeetha and V. S. K. Reddy, “An Effective Investigation for Quality of Service Enhancement of Content Delivery
Network for HTTP Live Streaming Using H. 265,” Scalable Computing: Practice and Experience, vol. 25, no. 4, pp. 2703–2710,
2024, doi: 10.12694/scpe.v25i4.2830.

[32] H. Wu, M. Claypool, and R. E. Kinicki, “Guidelines for Selecting Practical MPEG Group of Pictures.,” in IASTED Interna-
tional Conference on Internet and Multimedia Systems and Applications (EuroIMSA), Innsbruck, Austria: Citeseer, 2006, pp. 61–
66. doi: 10.5555/1169167.1169178.

[33] K. Panagidi, C. Anagnostopoulos, and S. Hadjiefthymiades, “Optimal grouping-of-pictures in iot video streams,” Computer
Communications, vol. 118, pp. 185–194, 2018, doi: 10.1016/j.comcom.2017.11.012.

[34] J. Gomez, E. F. Kfoury, J. Crichigno, and G. Srivastava, “A survey on network simulators, emulators, and testbeds used for
research and education,” Computer Networks, vol. 237, p. 110054, 2023, doi: 10.1016/j.comnet.2023.110054.

[35] T. Hidayat, Y. Azzery, and R. Mahardiko, “Load balancing network by using round Robin algorithm: a systematic literature
review,” Jurnal Online Informatika, vol. 4, no. 2, pp. 85–89, 2019, doi: 10.15575/join.v4i2.446.

[36] “EnvoyProxy Supported Load Balancers.” Accessed: Mar. 01, 2025. [Online]. Available: https://www.envoy-
proxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers.

[37] D. R. I. M. Setiadi, “PSNR vs SSIM: imperceptibility quality assessment for image steganography,” Multimedia Tools and
Applications, vol. 80, no. 6, pp. 8423–8444, 2021, doi: 10.1007/s11042-020-10035-z.

http://doi.org/10.24017/science.2025.2.7
https://www.usenix.org/system/files/nsdi23-rudow.pdf
https://www.usenix.org/system/files/nsdi24spring_prepub_meng.pdf
https://www.usenix.org/system/files/nsdi24spring_prepub_meng.pdf

http://doi.org/10.24017/science.2025.2.7 92

Appendices
Table 4S: Raw data from the tested cases in scenario 1.

Case
Segment

length
GOP
size

List length 1% PLR 2% PLR 3% PLR 4% PLR 5% PLR 6% PLR

1 1 second 12 frames 5 segments 50.0411 50.0378 46.3973 44.6780 38.8172 33.6964
2 1 second 12 frames 10 segments 50.0416 50.0410* 50.0410 50.0377 50.0438 45.8729
3 1 second 24 frames 5 segments 50.0125 50.0126 47.2241 44.3270 37.3120 34.5264
4 1 second 24 frames 10 segments 50.0121* 50.0121* 50.0121 50.0192 50.0189 48.7280
5 1.5 seconds 12 frames 5 segments 50.0427* 50.0427* 50.0427 47.5523 46.0695 33.8686
6 1.5 seconds 12 frames 10 segments 50.0378* 50.0378* 50.0378 50.0427 50.0449 50.0443
7 1.5 seconds 36 frames 5 segments 50.0195* 50.0195* 50.0195 48.8468 42.6126 34.8299
8 1.5 seconds 36 frames 10 segments 50.0368* 50.0368* 50.0368 50.0188 50.0298 49.1417
9 2 seconds 12 frames 5 segments 50.0045* 50.0045* 50.0045 50.0459 50.0429 50.0452
10 2 seconds 12 frames 10 segments 50.0430* 50.0430* 50.0430 50.0430 50.0425 50.0442
11 2 seconds 24 frames 5 segments 50.0106* 50.0106* 50.0106 50.0027 50.0068 46.0885
12 2 seconds 24 frames 10 segments 50.0152* 50.0152* 50.0152 50.0025 50.0075 50.0110
13 2 seconds 48 frames 5 segments 50.0396* 50.0396* 50.0396* 50.0396 50.0431 45.4919
14 2 seconds 48 frames 10 segments 50.0403* 50.0403* 50.0403 50.0393 50.0436 50.0426

*Value not explicitly tested; it is derived from the result at higher packet loss, where no observable degradation was detected.

Table 5S: Raw data from the tested cases in scenario 2.

Case
Load balanc-
ing algorithm

Segment
length

GOP size List length
1%

PLR
2%

PLR
3%

PLR
4%

PLR
5%

PLR
6%

PLR
1 Round Robin 1 second 12 frames 5 segments 0.07% 0.17% 2.09% 6.05% 8.90% 13.79%
2 Round Robin 1 second 12 frames 10 segments 0.05% 0.01% 1.56% 5.42% 6.50% 11.81%
3 Round Robin 1 second 24 frames 5 segments 0.19% 0.89% 4.06% 5.48% 8.46% 13.44%
4 Round Robin 1 second 24 frames 10 segments 1.17% 0.62% 2.83% 7.60% 9.09% 13.50%
5 Round Robin 1.5 second 12 frames 5 segments 0.00% 0.01% 0.91% 0.89% 3.84% 8.60%
6 Round Robin 1.5 second 12 frames 10 segments 0.59% 0.46% 3.16% 4.34% 6.51% 8.77%
7 Round Robin 1.5 second 36 frames 5 segments 0.00% 0.01% 0.81% 1.14% 3.68% 10.05%
8 Round Robin 1.5 second 36 frames 10 segments 0.00% 0.78% 1.62% 3.15% 6.70% 9.72%
9 Ring Hash 1 second 12 frames 5 segments 0.07% 0.15% 0.40% 3.01% 7.41% 13.27%
10 Ring Hash 1 second 12 frames 10 segments 0.02% 0.15% 1.47% 2.30% 4.48% 11.34%
11 Ring Hash 1 second 24 frames 5 segments 0.03% 0.09% 0.53% 1.60% 5.83% 10.46%
12 Ring Hash 1 second 24 frames 10 segments 0.02% 0.37% 0.13% 0.26% 2.60% 9.48%
13 Ring Hash 1.5 second 12 frames 5 segments 0.00% 0.00% 0.34% 0.27% 1.80% 5.43%
14 Ring Hash 1.5 second 12 frames 10 segments 0.00% 0.01% 0.02% 0.06% 1.39% 5.28%
15 Ring Hash 1.5 second 36 frames 5 segments 0.01% 0.00% 0.08% 1.14% 3.31% 7.03%
16 Ring Hash 1.5 second 36 frames 10 segments 0.00% 0.01% 0.02% 0.92% 3.26% 6.72%

http://doi.org/10.24017/science.2025.2.7

	1. Introduction
	2. Related Works
	3. Materials and Methods
	1.
	2.
	3.
	3.1. Video Characteristics
	3.2. Network Design
	3.3. Simulation Scenarios
	3.4. Performance Analysis Metrics

	4. Results
	3.5.
	Scenario 1
	Scenario 2

	5. Discussion
	6. Conclusions
	Appendices

