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1. Introduction 
The widespread adoption of multimedia distribution platforms such as YouTube, Twitch, and Fa-

cebook live has driven rapid growth in new social networking paradigms [1]. Advances in user de-
vices—featuring improved processing power, display resolution, and network connectivity—enable 
seamless video quality adaptation, enhancing viewer satisfaction and fueling market expansion. Live 
video streaming refers to the real-time recording and simultaneous broadcasting of media content to 
multiple users over the internet [1]. According to the Cisco Visual Networking Index, a majority of the 
internet has been used for video streaming over the past few years, from 73% in 2017 and increasing to 
82% by 2022 [2]. 

It is important to provide a good Quality of Experience (QoE) for viewers, as even minor disrup-
tions can significantly diminish user satisfaction. QoE refers to the overall level of satisfaction perceived 
by a user when interacting with a service or application. It transcends conventional Quality of Service 
(QoS) measures, which emphasize technical parameters such as bandwidth, latency, and error rates, to 
encompass the subjective evaluation of the user's experience. QoE considers elements such as content 
quality, user expectations, emotional state, and contextual usage, offering a holistic assessment of the 
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Abstract: Live video streaming denotes a video distribution service that con-
currently captures and transmits media material to all consumers in real time. 
In recent years, most of the internet has been used for video streaming, as 
platforms have transformed content consumption, providing immediate ac-
cess to films, television programs, live events, and user-generated materials 
worldwide. Platforms like Twitch, YouTube, and Amazon Prime are built on 
technologies that facilitate efficient content delivery, adaptive playback, and 
personalized recommendations. Hypertext Transfer Protocol live streaming 
is a popular protocol for adaptive video delivery that adjusts to network 
bandwidth but not to packet loss, which can severely impact viewer Quality 
of Experience (QoE). This study addresses the challenge of maintaining live 
video streaming quality in environments with varying packet loss. To im-
prove QoE, this study proposes optimizing HLS configuration parameters 
and evaluating the effects of two load balancing algorithms, round robin and 
ring hash, in a simulated testbed. The study investigates how adjusting the 
segment length, list length, and the group of pictures size affects the resilience 
of the system to packet loss, as assessed by objective evaluation metrics in-
cluding peak signal-to-noise ratio and data loss percentage. Results show that 
the ring hash algorithm consistently outperforms round robin in reducing 
data loss, and with the optimal parameter configuration, data loss remained 
below 1.4% even under 5% network packet loss.  
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service's effectiveness in fulfilling user requirements. It is essential, as it directly influences customer 
retention and happiness, rendering it a primary concern for service providers seeking to optimize per-
formance and improve the user experience [3]. 

The conventional IP-based streaming method is push-based, where the media is typically 
streamed over User Datagram Protocol (UDP) [4]. However, significant challenges are faced when de-
livering content to environments that involve various platforms [5]. One way to achieve a good QoE is 
by using Hypertext Transfer Protocol (HTTP) Adaptive Streaming (HAS). HAS is a media streaming 
technique that transmits video content in accordance with real-time network conditions and user capa-
bilities. It functions by dividing the video into separate parts, each encoded at different bitrates. The 
video player adaptively alternates among different bitrates, guaranteeing seamless playback with min-
imal buffering [4]. HAS simplifies the delivery of content by using HTTP to transmit video fragments, 
facilitating navigation around network address translation and firewalls [6]. A client individually re-
quests and retrieves each segment while preserving the playback session state, whereas the server is 
not obligated to retain any state. Consequently, the client can download segments from many servers 
without affecting system scalability [7]. Therefore, it takes advantage of standard web servers or caches 
found in networks of internet service providers and Content Distribution Networks (CDN). The server 
does not maintain responsibility for the client state; therefore, the client can download the segments 
from different servers, and it eliminates the need for a persistent connection between the client and the 
server [4]. 

There are two types of servers in a CDN; origin and replica. The origin server is where the original 
version of the content is, and the replica has a copy of the content. A replica server can act as a media 
server, cache server, or web server [8]. CDN is a useful method for raising the quality of the networks; 
it significantly increases the quality of internet services, with video streaming platforms greatly bene-
fiting from it [9]. In a CDN, the content is dispersed from the origin server across multiple replica serv-
ers, and the client retrieves the content from the closest replica server, which will result in better QoE 
and QoS [10, 11]. Edge servers can be used in conjunction with a load balancer to distribute the network 
load; a load balancer's main job is to get requests from clients, check the load on available servers, and 
direct each request to the server most capable of processing it. This choice is often made using set strat-
egies or algorithms [12]. 

HTTP Live Streaming (HLS) [13] is a video streaming protocol created by Apple in 2009 to transmit 
continuous video over the internet in a reliable manner. HLS is one of the HAS protocols, which use 
HTTP as the application and Transmission Control Protocol (TCP) as the transport layer protocol [4]. It 
is a pull-based streaming method where the video is segmented into chunks and encoded into multiple 
different bitrates. The server also generates a manifest file containing metadata for the video, audio, 
and subtitles, along with their corresponding retrieval locations. The client decides to pull the segments 
of the appropriate bitrate based on the available bandwidth to maximize QoE [4, 5, 14]. Other HAS 
protocols are Microsoft smooth streaming, Adobe’s Dynamic HTTP Streaming, and Dynamic Adaptive 
Streaming over HTTP (DASH) [15]. 

HLS has two primary parameters that can be tuned to optimize both QoE and QoS. The first is 
HLS Time, which defines the length of each segment, expressed in seconds, and will be referred to as 
segment length [16]. The second is HLS List Size, which determines the maximum number of segments 
included in the playlist. During HLS streaming, metadata are generated containing the most recent 
available segments along with their corresponding retrieval locations; this parameter will be referred 
to as list length [16]. 

Various studies have explored techniques to improve QoS and QoE in live streaming. However, 
they have not examined the combined effect of segment length, list length, and Group of Pictures (GOP) 
size in HLS when used alongside CDN and a load balancer to reduce packet loss. This study has a 
threefold contribution: (1) improving QoE in live streaming using HLS by reducing the impact of packet 
loss on data transmission through the use of a CDN and load balancer; (2) investigating the effects of 
different segment lengths and list lengths on packet loss; and (3) examining the influence of various 
GOP sizes on packet loss. 
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The remainder of this paper is as follows: recent papers that studied video streaming are reviewed 
in section 2. Section 3 details the proposed method. Section 4, test results are shown in detail. Simulated 
testbed discussion is explained in section 5, and section 6 concludes and suggests potential future re-
search directions. 

2. Related Works 
Providing a good QoE for viewers is the main focus when it comes to video streaming. Buffering, 

delay and quality loss can lead to the viewer being unsatisfied. In recent years, various research studies 
conducted on live streaming have been reviewed that contributed to improving QoE or QoS parameters 
through improving data transmission or reducing data loss. Among these efforts, Gutterman et al. [17] 
presented STAndard Low-LAtency vIdeo cONtrol (STALLION), which is an Adaptive Bitrate (ABR) 
algorithm that dynamically modifies bitrate selection in response to network throughput and latency 
variations in order to enable low-latency video streaming. STALLION uses the standard deviation of 
throughput and latency to make more stable and responsive bitrate decisions than traditional ABR 
systems, which only use buffer levels or average throughput. STALLION achieved a 1.8x boost in bi-
trate and lowered stall duration by 4.3x. Martinez-Caro et al. [18] presented a machine learning-based 
approach to detecting and predicting stalling events in video streaming over the DASH protocol to 
improve QoE. Two models are proposed: one for identifying stalling events in real-time based on 
transport-layer packet behavior and another using a recurrent neural network with long short-term 
memory to predict future stalling events before they occur. Using a long-term evolution emulation en-
vironment, their method effectively classified stalling events and forecast upcoming playback interrup-
tions, achieving an F1 score of 0.923 with an error rate of 10.83%. The findings suggest that network-
layer analysis can enhance video streaming performance without requiring direct access to the user’s 
playback device. 

The internet's architecture fundamentally adheres to a best-effort principle, lacking guarantees for 
the reliable transmission of packets. Consequently, applications must address challenges such as packet 
loss [19]. This issue is particularly critical for live streaming applications, as it leads to stalls, lowering 
the QoE and increasing the possibility of increasing the streaming delay in TCP-based streaming pro-
tocols. To address this issue, Bienik et al. [20] examined how Packet Loss Rate (PLR) affects the quality 
of compressed high-resolution videos that are transmitted across IP networks using the H.264 and 
H.265 codecs. 11,200 full high definition and ultra-high-definition video sequences encoded at various 
bitrates (1–15 Mbps) and employed simulated packet loss rates ranging from 0% to 1%. Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and absolute category rating were 
used to assess video quality objectively and subjectively. The findings support the notion that video 
quality declines with increasing PLR, with higher bitrates being more susceptible to this phenomenon. 
Furthermore, the results imply that in lossy contexts, smaller bitrates can occasionally preserve higher 
perceived quality. In a more network-focused approach, Clayman et al. [21] introduced a novel ap-
proach to streaming using Big Packer Protocol (BPP) with its in-network packet wash mechanism, 
which eliminates specific chunks rather than dropping the packets as it occurs in UDP or retransmitting 
them like TCP. BPP is tailored for high-bandwidth and low-latency applications, and they mapped 
H.264 Scalable Video Coding (SVC) into BPP packets, allowing dynamic adaptation while transmitting. 
Performance evaluation of BPP compared to TCP and UDP shows BPP significantly reduces latency 
and packet loss while maintaining better QoE than UDP or TCP. To improve packet handling in wire-
less environments, Taha et al. [22] proposed a smart algorithm that uses adaptive Quantization Param-
eters (QP) to improve QoE for video streaming in 5G wireless networks. The approach ensures 
smoother streaming by dynamically modifying QP to lessen the incidence of packet loss. According to 
experimental findings using Mean Opinion Score (MOS), QoE is enhanced by an ideal QP of 35 for low-
motion videos and a QP of 30 for high-motion videos.  

Building on resilience to burst losses, Rudow et al. [23] introduced Tambur, a novel loss recovery 
technique based on streaming codes that effectively handles bursty packet losses to enhance the quality 
of video conferences. By leveraging sequential packet decoding to optimize loss recovery, Tambur is 
able to reconstruct lost frames while consuming 35.1% less bandwidth than current forward error 
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correction techniques. Simulations on real-world Microsoft Teams traces revealed that Tambur reduces 
decoding errors by 26.5% and results in a 29% reduction in video freeze length. Tüker et al. [24] also 
employed BPP and its Packet Wash mechanism to investigate packet trimming at the edge as an in-
network video quality adaptation strategy to selectively remove less critical video data rather than los-
ing complete packets when bandwidth is constrained. By trimming packets at edge nodes, this tech-
nique maximizes bandwidth utilization while preserving low latency and high QoE. According to ex-
perimental findings, edge packet cutting offers higher QoE than HAS, guaranteeing smoother playback 
and improved scalability. Focusing on codec performance under loss, Abdullah et al. [25] carried out a 
comparative study comparing the effects of wireless network packet loss on real-time video streaming 
with H.265 and H.266 codecs. Through their work, an experimental testbed using FFmpeg and NetEm 
was introduced to assess codec performance in a variety of packet loss scenarios. The study discovered 
that, although both codecs showed quality degradation with increased packet loss, H.266 consistently 
provided superior compression efficiency and resilience by concentrating on objective QoE metrics like 
PSNR. Most recently, Meng et al. [26] introduced a packet loss recovery technique designed for edge-
based interactive video streaming, such as Stadia, called Hairpin. It dynamically differentiates between 
initial transmissions and retransmissions to strike a balance between low latency and effective band-
width usage. Hairpin lowers bandwidth costs by 40% and deadline miss rates by 32%, according to 
experiments conducted on real-world deployments. 

CDN was initially developed to overcome the limitations of web caching. In video streaming, it 
seeks to improve QoE in terms of providing consumers with content while making better use of net-
work resources [27, 28]. To examine this influence on content delivery and network efficiency, Shabrina 
et al. [29] looked into how CDNs affected QoS during live video streaming with HLS. Using Amazon 
Web Services (AWS) CloudFront as the CDN infrastructure, the researchers ran an experiment in which 
live video was broadcast from Bandung, Indonesia, to Tokyo, Japan. They measured throughput and 
packet loss ratio to evaluate streaming performance with and without a CDN, reporting an average 
throughput of 4452.6 kbps (compared to 3990.4 kbps without CDN) and a packet loss reduction to 0.08% 
(from 0.33% without CDN). Patel et al. [30] examined the performance of video streaming using cloud-
based services and investigated the effects of different cloud-based CDNs on video streaming, includ-
ing AWS CloudFront, Google Cloud, Azure, and Akamai, managing encoding, storage, and adaptive 
streaming to optimize video transmission by utilizing Spark for distributed analysis and Kafka for real-
time video processing. According to the study, Google Cloud performs better in South America and 
Europe, while AWS CloudFront offers superior QoE in places such as Asia and North America. Further 
investigating CDN integration, Sangeetha et al. [31] examined the improvement of QoS for HLS with 
the incorporation of CDN alongside H.265 encoding. The findings indicate that CDN integration en-
hances average throughput, concurrently reducing the packet loss ratio to 0.072, in contrast to a 0.297% 
loss in the absence of CDN. 

Table 1 highlights the key aspects of each study, emphasizing their research focus, streaming pro-
tocol employed, use of CDN, video coder utilized, experimental environment, and outcomes. 

 
Table 1: Comparison of related works. 

# Research Focus Streaming 
Protocol 

CDN Video 
Coder 

Environ-
ment 

Result 

[18] 
Predict stalling 

events DASH 
Not 
used H.264 Simulation Achieved F1 Score of 0.923. 

[20] 
Decrease impact of 

packet loss RTP 
Not 
used 

H.264 and 
H.265 Simulation 

Quality of sequences affected by 
packet loss ratio declines with in-

creasing bit rate. 

[21] 
Decrease latency 
and packet loss 

BPP 
Not 
used 

H.264 SVC Simulation 
BPP gives better QoE than UDP or 

TCP. 

[22] 
Decrease impact of 

packet loss 
UDP 

Not 
used 

H.264 and 
H.265 

Real world 
Optimal QP is 35 for low motion and 

30 for high motion. 

[23] 
Decrease impact of 

packet loss 
UDP 

Not 
used 

VP9 Simulation 

Tambur reduces the frequency of de-
coding failures for video frames by 
26% and the bandwidth used for re-

dundancy by 35%. 
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Table 1: Continue      

[24] 
Decrease packet 

loss 
BPP 

Not 
used 

H.264 SVC Simulation 
Shows trimming packets at the edge 
is better than using an ONOS con-

troller. 

[25] 
Decrease impact of 

packet loss 
UDP 

Not 
used 

H.265 and 
H.266 

Simulation 
Shows H.266 is more robust against 

network packet loss 

[26] 
Decrease packet 

loss 
Customized 

RTP 
Not 
used 

N/A Real world 
Hairpin lowers bandwidth costs by 
40% and deadline miss rates by 32% 

[29] 
Decrease packet 

loss 
HLS Used H.264 Real world 

Shows CDN reduces packet loss 
from 0.33% to 0.08% 

[31] Decrease packet 
loss 

HLS Used H.265 Real world Shows CDN reduces packet loss 
from 0.297% to 0.072% 

3. Materials and Methods 
A virtual environment is created using VMware Workstation to simulate two scenarios for many 

cases on a host machine with a Ryzen 9 7900 CPU and 32GB of DDR5 RAM. Figure 1 shows the general 
diagram of the proposed system. 

 

 
Figure 1: General block diagram of the proposed system. 

3.1. Video Characteristics 
The input video is 1920x1080, 4 minutes and 32 seconds, 24 frames per second. The video is en-

coded in real-time using FFmpeg into three different bitrates using H.265 using the ultrafast preset: 
• High: 4.8 Mbps bitrate, ~160 MB total file size. 
• Medium: 3 Mbps bitrate, ~100 MB total file size. 
• Low: 1 Mbps, ~35 MB total file size. 
 
When encoding a video for streaming with HLS, a suitable GOP size is important; the GOP size 

designates the quantity and arrangement of I-frames, P-frames, and B-frames [32]. I-frames refer to 
intra-coded frames that can function as independent images and are frequently utilized as a point of 
reference for a brand-new scene or a significant alteration to the previously sent frame sequence. Only 
predictive data are contained in P-frames, which are produced by examining the deltas between the 
current and prior frames. B-frames are produced by comparing the differences between the preceding 
and subsequent reference frames. Both P-frames and B-frames have the benefit of using far fewer re-
sources when stored or transferred; however, they lack the information necessary to watch the associ-
ated video frame [33].  

The segment lengths and list lengths used in this study introduce noticeable latency; they were 
chosen because their delay is significantly lower than that of larger values, while maintaining sufficient 
resilience to packet loss. The GOP size should align with the segment length, meaning it should be 
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equal to, or a divisor of, the number of frames in a segment (e.g., the same, half, one-third, one-fourth, 
etc.) [16]. However, a very small GOP size can lead to high resource utilization. 

3.2. Network Design 
3.2.1. Origin Server 
The origin server is a Debian 12 Virtual Machine (VM), it uses FFmpeg to encode and segment the 

video in real time, and it uses Nginx server to stream the video via HLS. 
 
3.2.2. Cache Servers 
50 Docker containers of Nginx are created and configured to act as cache servers to fetch, cache, 

and send content to the receivers upon request. The Docker containers are created inside Graphical 
Network Simulator 3 (GNS3) VM, which is a network experimentation framework that supports mul-
tivendor models and emulation of actual devices [34]. 

 
3.2.3. Load Balancer 
The load balancer is a Debian 12 VM that runs EnvoyProxy to distribute requests from the clients 

based on the algorithm used (round robin or ring hash) to one of the cache servers. 
• Round robin is one of the most straightforward load balancing algorithms; it makes use 

of a circular list and a pointer to the most recent server that was chosen [35]. 
• Ring hash implements consistent hashing, where every request is routed to a host by hash-

ing a property of the request and locating the closest corresponding host clockwise around 
the ring [36]. 

Ring hash is proposed, as it has minimal disruption when servers are added/removed to provide 
the least data loss to improve QoE, and round robin is tested for comparison to ring hash. 

3.2.4. Clients 
The client is a Debian 12 VM. For the first scenario, FFmpeg is used to download the content. For 

the second scenario, Java is used with FFmpeg to simulate 60 clients requesting the load balancer to 
fetch the contents. 

3.3. Simulation Scenarios 
Two distinct scenarios have been designed to analyze the differences in segment lengths, list 

lengths and GOP sizes. Table 2 outlines the key differences between the two scenarios for a clear and 
structured comparison. 
 

Table 2: Details of scenario 1 and 2. 

Test Parameters Scenario 1 Scenario 2 

Number of cache servers 1 50 

Usage of load balancer Not used Used 

Number of clients 1 60 

Tested load balancing algorithms N/A Round Robin and Ring Hash 

Tested segment length 1, 1.5 and 2 seconds 1 and 1.5 seconds 

Tested list length 5 and 10 segments 5 and 10 segments 

Tested GOP sizes 
12, 24, 36 and 48 frames depending on 

the segment length. 
12, 24 and 36 depending on the seg-

ment length. 

Total tested cases 14 cases 16 cases 
 

3.3.1. Scenario 1: One Client and One Cache Server 
In the first case, the main server streams the video in real time, and the client requests a cache 

server to download the high-quality video. The downloaded video is then compared to the original 
video to observe the QoE. Figure 2 shows the network design of this scenario; the packet loss simula-
tions are put on the link in GNS3 between the main server/cache server and the cache server/client. The 
diagram in figure 3 shows all the tested cases performed in this scenario, for example: 
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• Case 1: the segment length was 1 second, the GOP size was 12 frames, and the list length 
was 5 segments. 

• Case 2: the segment length was 1 second, the GOP size was 12 frames, and the list length 
was 10 segments. 

• Case 3: the segment length was 1 second, the GOP size was 24 frames, and the list length 
was 5 segments. 

• etc. 
For every case, packet loss was simulated from 1% to 6%. 
 

 
Figure 2: Network design of scenario 1. 

 
Figure 3: Tested cases of scenario 1. 

Figure 4 shows the process diagram of this scenario. The client requests the cache server for the 
contents to pull the stream, the cache server checks if the content is available, and if it already has the 
content, it will reply with the content. If the content is not available in the cache server, the cache server 
requests the origin server, stores a copy of the content and sends the content to the client. This process 
occurs while the origin server continuously encodes and segments the live video into multiple repre-
sentations. 
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Figure 4: Process diagram of scenario 1. 

3.3.2. Scenario 2: 60 Clients and 50 Cache Servers 
Sixteen cases are tested with different parameters of segment length, list length, GOP size, and 

load balancer algorithm, as seen in figure 5. Similar to scenario 1, for each case, packet loss is simulated 
from 1% to 6%. 

 

 
Figure 5: Tested cases of scenario 2. 

For every case, packet loss from 1% to 6% is simulated. Sixty clients request the streamed video 
and EnvoyProxy is used to distribute the requests of the clients to 50 cache servers. Java is used to 
simulate the clients at the same time: 20 clients request the high-quality stream, 20 clients request the 
medium-quality stream, and 20 clients request the low-quality stream. The clients request the load bal-
ancer to download the streamed video; round robin and ring hash algorithms are tested in EnvoyProxy, 
and their differences are compared with the different parameters shown in Figure 5 above to see the 
impact of packet loss on data loss. Figure 6 shows the network design of scenario 2, the packet loss 
simulations are put on the link in GNS3 between the main server-cache server and the cache server-
load balancer. 
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Figure 7 shows the process diagram of scenario 2. The client requests the load balancer for the 
contents to pull the stream, the load balancer requests the cache server based on the load balancing 
algorithm chosen, the cache server checks if the content is available, if it already has the content, it will 
reply with the content. If the content is not available in the cache server, the cache server requests the 
origin server, stores a copy of the content, and sends the content to the load balancer, and the load 
balancer replies to the client. This workflow is carried out while the origin server continuously encodes 
and segments the live video into multiple representations. 

 

 
Figure 6: Network design of scenario 2. 

 
Figure 7: Process diagram of scenario 2. 

3.4. Performance Analysis Metrics 
For the first scenario, for evaluation of the tests conducted, PSNR is used. PSNR is frequently em-

ployed as a metric to assess image quality, its primary component is the Mean Square Error (MSE), 
from which it is formed [37]. Calculated over the image's dimensions, MSE is the sum of the squared 
differences between the original and processed image's pixel values. The MSE value is transformed 
logarithmically to produce PSNR. It shows the inaccuracy in an image; higher PSNR values, which 
imply higher image quality, are produced by fewer disparities in pixel values. In theory, PSNR can 
become close to infinity if the pixel values of the original and processed images remain unchanged. On 
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the other hand, PSNR values decrease with more pixel value discrepancies, suggesting a drop in image 
quality [37]. For the second scenario, the total size of the downloaded files is calculated and compared 
with the expected size to quantify the impact of packet loss on data loss during transmission. 

4. Results 

Scenario 1 
As seen in figure 8 and figure 9, videos sent with a higher segment length are less affected by 

network packet loss, leading to a higher PSNR. A bigger list length (10, in this case) also decreased the 
impact of packet loss, especially when the segment length was 1 second, due to the client having more 
time to recover the packets before segment expiration happened. GOP size did not have a noticeable 
impact. In most cases, GOP size only had a slight impact when packet loss became 6%; higher GOP size 
was better when segment length was 1 second, and lower GOP size was better when segment length 
was 1.5 or 2 seconds. Table S5 presents the numerical results of this scenario.    

 

 
Figure 8: Scenario 1, PSNR when segment length is 1 sec-

ond. 

 
Figure 9: Scenario 1, PSNR when segment length is 1.5 sec-

onds. 

HLS retrieves three segments before initiating playback; therefore, segment length and list length 
have a substantial effect on stream delay, as seen in figure 10. The minimum delay is three times the 
segment length, and the maximum delay is the segment length multiplied by the list length; for in-
stance, with a segment length of 1.5 seconds and a list length of five segments, the stream delay ranges 
from 4.5 to 7.5 seconds. 

 

 
Figure 10: Expected delay depending on segment and list length. 
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Scenario 2 
When there are more clients and a load balancer is used, the results are not as straightforward as 

in scenario 1; for the segment length of 1 second and list length of five segments, as seen in figure 11, 
different GOP sizes did not have a markable difference with round robin. However, while using ring 
hash, a GOP size of 24 frames consistently had better results than 12 frames. 

When the list length increased to 10 segments, the differences became more noticeable. As shown 
in figure 12, a GOP size of 12 frames performed better with round robin, while a higher GOP size was 
more effective with ring hash. For a segment length of 1 second with ring hash, from a packet loss of 
4% to 6%, on average, the amount of data sent with the higher GOP size was 1.93% more than the lower 
size. 

 
Figure 11: Scenario 2, data loss ratio when segment length is 

1 second and list length is five segments. 

 
Figure 12: Scenario 2, data loss ratio when segment length is 

1 second and list length is 10 segments. 

Similar to the segment length of 1 second, differences were less noticeable for the segment length 
of 1.5 seconds when the list length was five segments compared to 10 segments. However, with ring 
hash, a higher GOP size resulted in more data being lost, as seen in figure 13. Less data was lost when 
the GOP size was 12 frames. When the list length increased to 10 segments, the GOP size had little effect 
when using round robin; however, with ring hash, a GOP size of 12 frames consistently resulted in less 
data loss, as shown in figure 14. 

 

 
Figure 13: Scenario 2, data loss ratio when segment length is 

1.5 seconds and list length is five segments. 

 
Figure 14: Scenario 2, data loss ratio when segment length is 

1.5 seconds and list length is 10 segments. 

With ring hash, when comparing the segment length of 1 and 1.5 seconds with a list length of five 
segments, a longer segment length can make a bigger difference than GOP size, as seen in figure 15. 
However, with a list length of 10 segments, GOP size can also have a substantial influence, as seen in 
figure 16, where a segment length of 1 second with a GOP size of 24 frames had better results in certain 
cases than a segment length of 1.5 seconds with a GOP size of 36 frames. 
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Figure 15: Scenario 2, data loss ratio when list length is five 

segments and load balancer algorithm is ring hash. 

 
Figure 16: Scenario 2, data loss ratio when list length is 10 

segments and load balancer algorithm is ring hash. 

Figure 17 and figure 18 show the impact of list length on segment length of 1 and 1.5 seconds, 
respectively. List length had a much smaller impact on data received at the clients when segment length 
was 1.5 seconds compared to 1 second, GOP size had the majority of the impact. For a segment length 
of 1 second, both list length and GOP size had a remarkable impact on decreasing data loss. The detailed 
numerical results for this scenario are provided in Table S5. 

 

 
Figure 17: Scenario 2, data loss ratio when segment length is 

1 second and load balancer algorithm is ring hash. 

 
Figure 18: Scenario 2, data loss ratio when segment length is 

1.5 seconds and load balancer algorithm is ring hash. 

5. Discussion 
According to the observations, segment length and list length can have a huge impact on the re-

duction of data loss due to packet loss. When using a load balancer, the ring hash algorithm consistently 
reduced the impact of packet loss on data arriving at the clients compared to round robin, as seen in 
figure 19. GOP size does not have any impact on stream delay, and the different GOP sizes tested also 
had little to no impact on the quality of the output video when their PSNR was calculated. 
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Figure 19: Average data loss comparison between round robin and ring hash. 

The findings show that longer segment length and/or bigger list length will reduce the impact of 
packet loss due to the player having more time to recover the lost packet at the cost of longer stream 
delays as seen in figures 15, 16, 17 and 18. Optimal GOP size (24 frames for a segment length of 1 second, 
12 frames for a segment length of 1.5 seconds) can make a significant difference in reducing the impact 
of packet loss on data arriving at the clients.  

The optimal parameters for HLS depend on the application; if stream delay is not important, longer 
segment duration and/or list length will yield a better result against packet loss. As seen in Figure 18, a 
segment length of 1.5 seconds with a GOP size of 12 frames and a list length of 10 segments yields the 
best result to combat packet loss but with the consequence of a stream delay between 4.5 and 15 seconds. 
But with the list length of five segments, the maximum delay is cut by half while only being more sus-
ceptible to data loss by an average of 0.25% between 4% and 6% packet loss compared to when the list 
length is 10 segments.  

Table 3 compares this study with relevant prior works. While Taha and Ali [22] examines the effect 
of QP and Abdullah et al. [25] explores the difference between H.265 and H.266 in a low latency live 
streaming environment with packet loss, this study focuses on the impact of segment length, list length, 
GOP size, and load balancing algorithms in a higher latency live streaming context. 

 
Table 3: Comparison of this study to relevant related works. 

Parameters [22] [25] Scenario 1 of this study Scenario 2 of this study 

Protocol UDP UDP HLS HLS 
Codec H.264 and H.265 H.265 and H.266 H.265 H.265 
CDN Not used Not used Not used Used 

Evaluation Metric PSNR, SSIM and MOS PSNR and SSIM PSNR Data Loss 
Environment Real-world Simulation Simulation Simulation 

Stream latency Low latency Low latency High latency High latency 
Range of packet 

loss 
0% to 1% 0% to 10% 0% to 6% 0% to 6% 

Contribution 

Shows the effect of QP 
in low and high mo-
tion videos in a net-

work with packet loss 

Shows the degrada-
tion of H.265 and 

H.266 in a network 
with packet loss 

Shows the effect of seg-
ment length, list length 
and GOP size in a net-
work with packet loss 

Shows the effect of seg-
ment length, list length, 
GOP size, and load bal-
ancing algorithm in a 

network with packet loss 
 
Segment length of 1.5 seconds with a list length of five or 10 segments would not be viable for video 

chats or conferences due to the high stream delay, but it is viable for streams where delay does not affect 
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QoE, such as sport events, as 15 seconds of delay is acceptable while also being highly resistant to data 
loss. The limitations of this paper are the absence of subjective and other objective evaluation metrics, 
as PSNR and data loss may fail to reflect the full extent of the result, because in some cases no amount 
of data is lost but buffering is still a possibility. In addition, he implementation of the testbed in a virtual 
environment is another limitation, as no other real-world variables are taken into consideration other 
than packet loss. 

6. Conclusions 
The adaptive bitrate algorithm of HLS only takes bandwidth into consideration when picking the 

appropriate stream; network packet loss leads to data loss, stalls, and delays in the stream, resulting in 
a lower QoE for the viewers. In this study, data loss due to packet loss is investigated in a controlled 
environment, and various cases are observed to reduce the impact of packet loss. The findings highlight 
that higher segment and list lengths can improve live video streams against data loss, and GOP size can 
have a significant impact on it as well. Using a load balancer with ring hash consistently outperformed 
round robin for HLS. 

This research can be extended in several directions. One possibility is to implement load balancing 
logic within the client player to reduce data loss, eliminate the need for a dedicated load balancing 
server, and minimize stream delay. Another is to evaluate the proposed methods and parameters in 
real-world environments, as factors such as cost and varying network conditions were not considered 
in this study. Further work could involve comparing the ring hash algorithm with the maglev algorithm, 
which offers faster host lookup times but less stability when upstream hosts change. Additional direc-
tions include comparing and testing the optimal QP proposed in previous studies with different codecs 
in the same testbed, incorporating other objective evaluation metrics such as buffering, conducting sub-
jective user evaluations, and assessing the resource requirements for the various configurations. 
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Appendices 
Table 4S: Raw data from the tested cases in scenario 1. 

Case 
Segment 

length 
GOP 
size 

List length 1% PLR 2% PLR 3% PLR 4% PLR 5% PLR 6% PLR 

1 1 second 12 frames 5 segments 50.0411 50.0378 46.3973 44.6780 38.8172 33.6964 
2 1 second 12 frames 10 segments 50.0416 50.0410* 50.0410 50.0377 50.0438 45.8729 
3 1 second 24 frames 5 segments 50.0125 50.0126 47.2241 44.3270 37.3120 34.5264 
4 1 second 24 frames 10 segments 50.0121* 50.0121* 50.0121 50.0192 50.0189 48.7280 
5 1.5 seconds 12 frames 5 segments 50.0427* 50.0427* 50.0427 47.5523 46.0695 33.8686 
6 1.5 seconds 12 frames 10 segments 50.0378* 50.0378* 50.0378 50.0427 50.0449 50.0443 
7 1.5 seconds 36 frames 5 segments 50.0195* 50.0195* 50.0195 48.8468 42.6126 34.8299 
8 1.5 seconds 36 frames 10 segments 50.0368* 50.0368* 50.0368 50.0188 50.0298 49.1417 
9 2 seconds 12 frames 5 segments 50.0045* 50.0045* 50.0045 50.0459 50.0429 50.0452 
10 2 seconds 12 frames 10 segments 50.0430* 50.0430* 50.0430 50.0430 50.0425 50.0442 
11 2 seconds 24 frames 5 segments 50.0106* 50.0106* 50.0106 50.0027 50.0068 46.0885 
12 2 seconds 24 frames 10 segments 50.0152* 50.0152* 50.0152 50.0025 50.0075 50.0110 
13 2 seconds 48 frames 5 segments 50.0396* 50.0396* 50.0396* 50.0396 50.0431 45.4919 
14 2 seconds 48 frames 10 segments 50.0403* 50.0403* 50.0403 50.0393 50.0436 50.0426 

*Value not explicitly tested; it is derived from the result at higher packet loss, where no observable degradation was detected. 
 

Table 5S: Raw data from the tested cases in scenario 2. 

Case 
Load balanc-
ing algorithm 

Segment 
length 

GOP size List length 
1% 

PLR 
2% 

PLR 
3% 

PLR 
4% 

PLR 
5% 

PLR 
6% 

PLR 
1 Round Robin 1 second 12 frames 5 segments 0.07% 0.17% 2.09% 6.05% 8.90% 13.79% 
2 Round Robin 1 second 12 frames 10 segments 0.05% 0.01% 1.56% 5.42% 6.50% 11.81% 
3 Round Robin 1 second 24 frames 5 segments 0.19% 0.89% 4.06% 5.48% 8.46% 13.44% 
4 Round Robin 1 second 24 frames 10 segments 1.17% 0.62% 2.83% 7.60% 9.09% 13.50% 
5 Round Robin 1.5 second 12 frames 5 segments 0.00% 0.01% 0.91% 0.89% 3.84% 8.60% 
6 Round Robin 1.5 second 12 frames 10 segments 0.59% 0.46% 3.16% 4.34% 6.51% 8.77% 
7 Round Robin 1.5 second 36 frames 5 segments 0.00% 0.01% 0.81% 1.14% 3.68% 10.05% 
8 Round Robin 1.5 second 36 frames 10 segments 0.00% 0.78% 1.62% 3.15% 6.70% 9.72% 
9 Ring Hash 1 second 12 frames 5 segments 0.07% 0.15% 0.40% 3.01% 7.41% 13.27% 
10 Ring Hash 1 second 12 frames 10 segments 0.02% 0.15% 1.47% 2.30% 4.48% 11.34% 
11 Ring Hash 1 second 24 frames 5 segments 0.03% 0.09% 0.53% 1.60% 5.83% 10.46% 
12 Ring Hash 1 second 24 frames 10 segments 0.02% 0.37% 0.13% 0.26% 2.60% 9.48% 
13 Ring Hash 1.5 second 12 frames 5 segments 0.00% 0.00% 0.34% 0.27% 1.80% 5.43% 
14 Ring Hash 1.5 second 12 frames 10 segments 0.00% 0.01% 0.02% 0.06% 1.39% 5.28% 
15 Ring Hash 1.5 second 36 frames 5 segments 0.01% 0.00% 0.08% 1.14% 3.31% 7.03% 
16 Ring Hash 1.5 second 36 frames 10 segments 0.00% 0.01% 0.02% 0.92% 3.26% 6.72% 
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